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i “I% I' The CO“HPS e of the Tacoma [fr_esenancg did not cause lll1e collapse of ﬂ.‘le bridge,
what did? Recent research provides an alternative expla-

""':”J;‘:;_i Narrows Suspensmn B"dge' &k nauani‘or the collapse Qt'%he Tacoma Narrows bridge.
- | A Modern Viewpoint ;5, hid r and McKenna [4[ (Bftend that nonlinear effects.

“linear re ce, were the main factors leading o the
Gilbert N. Lewis % / illati [ the bridge (see [5] for a good review
Michigan Technological University 1 "-31’['.1[ 21" ' article). The theory involves partial differential equa-
Lta'koms) t i—E_} tions. However, a simplified model leading to a nonlin-
In the summer ofﬂ_@ the Tagoma. N arrbws susxnsmn ear ordinary differential equation can be constructed,
bridge in the state of Washington was completed and The development of the model below is not exactly
opened to traffic, Almost immediately, observers noticed the same as that of Lazer and McKenna, but it results in
that the wind blowing across the roadway would some- a similar differential equation. The example is a new
times set up large vertical vibrations in the roadbed. The one, and it shows another way that amplitudes of oscilla-
;']Shridge became a tourist attraction as people came to tion can increase.
" watch and pet] ide the undulating bridge. Finally, on Consider a single vertical cable of the suspension
. November 7,( 1940, during a powerful storm, the oscilla- bridge. We assume that it acts like a spring but with
tions increased b beyond any previously observed, and the different characteristics in tension and compression and
bridge was_qﬁcumd. Soon the vertical oscillations with no damping. When stretched. the cable acts like a
became rotational, as observed by lookjng down the spring with Hooke's constant, b, while, when

roadway. The entire'span was eventua)ly shaken apart, by compressed, it acts like a spring with a different Hooke’s
the large vibrations, and the bridge . See [1] (ﬂw& constant, a. We assume that the cable in compression

and [2] for interesting and sometimes humorous/anec- exerts a smaller force on the roadway than when

dotes associated with the bridge._ §y [r‘fﬂll‘d‘t ) stretched the sa ne distance, so that 0 <a < b. Let the
The noted engineer(Theodore von Karman as asked vertical déflectio sitive direction downward) of the

to determine the cause of the collapse- Heé and his coau- shcc of the roadbed attached to this cable be denoted by
thors [3] claimed that the wind blowing mmfdm_ulaﬂf o+ (@), where 1 represents time, and y = 0 represents the
Dicross the roadway separated intovortices (wind u*lé.}[m} equilibrium position. As the roadbed oscillates under the

-alternately above and below théydadbed, ‘therebysetting " - influence of an applied vertical force (due to the von
up a periodic, vertical force acting on the bridge. It was Karman vortices), the cable provides an upward restor-
this force that caused the oscillations. Others further ing force equal to by when y > 0 and a downward restor-

Jh m sxzeg that m:_quuency_of_Lhu_fomng_funnum_ ing force equal to ay when y < 0. This change in the

(- y_mat - - idge, thus Hooke’s law constant at y = 0 provides the nonlinearity
2 ' e leadmg to resonance large osclllauonb and desm.tctwm b to the differential equation. We are thus led to consider
2 eseribed in equation (31). Section Bﬁc;r—almost ?-lg the differential equation derived from Newton's second

‘? csonance was _blamed as the cause of the law of motion (F = ma),
@ of the bridge, although the von Karman group 3 - py ' = —by +§i£)
denied this, stating that “it is very improbable that reso-T:™ t'"‘l’”}"lj my” + () = 8. 7 — oy +§r.{)

nance with alternating vortices plays an important role in™ “where f( ¥} is the nonlinear function given by

the oscillations of suspension bridges™ [3]. . Ak | _ P i+
As we can see from equation (31), Section 3.8, reso- F é‘és\ % s [ by, !fya 0 7 ;
nance is a lineqr phenomenon, In addition, for resonance 7J.=i Z‘__ . ay, if y<0

to occur, there must be an exact match between the fre- g(f) is the applied force, and m is the mass of the secuon[“ b
quency of the forcing function and the natral frequency  of the roadway. Note that the differential equationis 4 = A\

of the bridge. Furthermore. there must be absolutely no. linear on any interval on which y does not change sign.
damping in the system, It should not be surprising, then,

that resonance was not the culprit in the collapse.

I’knrpl&t] ﬂi’ﬂl .
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Now, let us see what a typical solution of this The next positive value of ¢ after f = /2 at which y(1) =
lem would look like. We will assume that m= 1{b = 0 is 1 = 32, at which point ¥{(#/2) 5 & + ¥is.
d e(t) = s'm@ Note that the frequency of the At this point, the solution has gone through one cycle
orcing function is larger tha ncies of in the time interval [0, 32/2]. During this cycle, the
in bo i 3 section of the roadway started at the equilibrium with
not expect resonance to oceur, We also assign the positive velocity, became positive, came back to the
following initial values to y: y(0) =0, y(0) = &, where equilibrium position with negative velocity, became
@ > 0, so that the roadbed starts in the equilibrium posi- negative, and finally returned to the equilibrium position
tion with downward velocity. with positive velocity. This pattern continues indefi-
Because of the downward initial velocity and the nitely, with gach cycle covering 3272 time units. The
positive applied force, y(f) will initially increase and solution for the next cycle is
become posiéive. Therefore, we first solve tein~am, 1 l ju== &
¥ H4y =sin 4, y0)=0, y(0)=a He)=in 2![— E( * +@) e 2:] g [T 2HJ’
The solution is the sum of the cump]emelmary solution, - ICAIT
v.(r), and the pam/t;ular soh:mon. vp(r). It is easy to see y(f) =sin ,I: _( a+ é_) _i COs £ cOs 2,] on [27, 37,
that y.(1) = ¢ cos(‘Z) + ¢, sin 2¢ (see Section 3.3), and 15 15
(1) = ~Viz sin(d) (see Section 3.4). Thus, 45 Gk 2.  Itis instructive to note that the velocity at the begin-
y(1)=c co8 21 + ¢,8in 2t — — sin 41, ning of the second cycle is (¢ + %is), while, at the begin-
5 By . 12 ning of the third cycle, it is (& + ¥s). In fact, the
The initial conditions give velocity at the beginning of each cycle is ¥is greater than
yO)=0=cy. at the beginning of the previous cycle, It is not surpris-
L A ing, then, that the amplitude of oscillations will increase
- y(0)= a=2c;— _l_ over time, since the amplitude of (one term in) the solu-
’ .3 tion during any one eycle is directly proportional to the
so that ¢y = (o + ¥4)/2. Therefore, S ¢matiemat velocity at the beginning of the cycle.
1/ 1 = . It must be remembered that the model presented here
wn= {a‘ )sin 2t— —,@ 4t ) __. . is a very simplified one-dimensional model that cannot
2 12 ~ \«ﬂ‘r take into account all of th Jnm;;am_mte ctions of real 2 25

= sin 2![ %(a’+%)—%cns QIJ

where we have used sin 41 = 2 sin 27 cos 2r. We note that
the first positive value of ¢ for which y(f) is again equal
to zero is = 7/2. At that point, ¥ (#2) ={—(a+ %). )

After t = @2, y becomes negative, so we mustHow

solve the new problem
. 8 .
2 3
The solution, found as above, is

2
¥ = (a+

4
=cos :[(a+@ ~Is sin f cos 2f—|.

g)cos r= —l- sin 4r
5 15

bndges The reader is referred: to the account by Lazer
and McKenna [4] for a more complete model. More
recently, McKenna [6] has refined that model to provide
a different viewpoint of the/ursmna.l oscillations
observed in the Tacoma bridge. 1% N#)

Research on the behavior of bridges under forces
continues. It is likely that the models will be refined over
time and new insights will be gained from the research.
However, it should be clear at this point that the large
oscillations causing the destruction of the Tacoma
Narrows suspension bridge were not the result of reso-
nance.




