第3章 習題簡答

習題 3-1

1. 臨界點: $0,\frac{3}{4}$, 極大值: f(-2)=24 , 極小值: $f\left(\frac{3}{4}\right)=-\frac{27}{256}$

2. 臨界點: $0,\pm 2$, 極大值: $f(\pm 3) = 5$, 極小值: $f(\pm 2) = 0$

3. 臨界點:0,1,極大值:f(2) = f(0) = 2,極小值: $f(\pm 1) = 1$

4. 臨界點:2 ,極大值:f(2)=4 ,極小值:f(0)=2

5. $\frac{1}{4}$ 6. c點不存在 7. $\sqrt{3}$ 8. 略 9. 略 10 略

習題 3-2

1. 遞增區間:(-1,0) \bigcup $(1,\infty)$,遞減區間: $(-\infty,-1)$ \bigcup (0,1) ,相對極大值:f(0)=0 ,相對極小值: $f(\pm 1)=-1$ 。

2. 遞增區間:(-3,-1) $\bigcup (1,\infty)$,遞減區間: $(-\infty,-3)$ $\bigcup (-1,1)$,相對極大值:f(-1)=4,相對極小值:f(-3)=0, f(1)=0。

3. 遞增區間:(0,4) ,遞減區間:(-5,0) $\bigcup (4,5)$,相對極大值:f(4)=16/3 ,相對極小值:f(0)=0 ,極大值:f(-5)=275/6 ,極小值:f(0)=0 。

4. 遞增區間: $(-\infty, -1 - \sqrt{6}) \cup (-1 + \sqrt{6}, \infty)$,遞減區間: $(-1 - \sqrt{6}, -1) \cup (-1, -1 + \sqrt{6})$,

相對極大值: $f(-1-\sqrt{6}) = -3-2\sqrt{6}$, 相對極小值: $f(-1+\sqrt{6}) = -3+2\sqrt{6}$ 。

5. 遞增區間: (0,∞), 遞減區間: (-∞,0), 無極值。

6. 遞增區間: (-∞, -3) \cup (-3, 0) ,遞減區間: (0, 3) \cup (3, ∞) ,相對極大值: f(0) = 4/9 ,無相對極小值。

7. 略 8. 略 9. 略 10. 相對極小值: $f(1/e) = 1/\sqrt[6]{e}$ 。

習題 3-3

1. 相對極大值: f(0) = 2 ,相對極小值: f(2) = -2 ,反曲點: (1,0) 。

2. 相對極大值: f(0) = 0 ,相對極小值: $f(\pm 1) = -1$,反曲點: $(\pm \frac{1}{\sqrt{3}}, -\frac{5}{9})$ 。

3. 相對極大值: f(-1)=2,相對極小值: f(1)=-2,反曲點: $(\pm \frac{1}{\sqrt{2}}, \frac{7}{4\sqrt{2}}), (0,0)$ 。

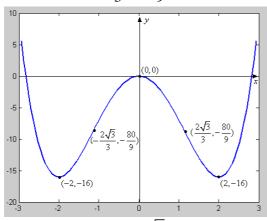
4. 相對極大值: $f(0)=\sqrt[3]{16}$,相對極小值: $f(\pm 2)=0$,反曲點: $(\pm 2\sqrt{3},\sqrt[3]{4})$ 。

5. 相對極大值: f(0) = 0 ,相對極小值: $f\left(\frac{2}{5}\right) = -\frac{3}{25}\sqrt[3]{20}$,反曲點: $(-\frac{1}{5}, -\frac{6}{25}\sqrt[3]{5})$

6. 上凹區間: (-∞,-1) U(1,∞), 下凹區間: (-1,1), 反曲點: (±1,-5)。

7. 上四區間: $(-\infty,-1)$ \cup $(-\frac{1}{\sqrt{5}},\frac{1}{\sqrt{5}})$ \cup $(1,\infty)$,下四區間: $(-1,-\frac{1}{\sqrt{5}})$ \cup $(\frac{1}{\sqrt{5}},1)$,

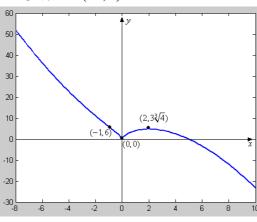
反曲點: $(\pm 1,0), (\pm \frac{1}{\sqrt{5}}, -\frac{64}{125})$ °


8. 上凹區間: $(-2,\infty)$,下凹區間: $(-\infty,-2)$,反曲點: $(-2,-2e^{-2})$ 。

9. 上凹區間: (2,∞),下凹區間: (-∞,2),反曲點: (2,2e⁻²)。

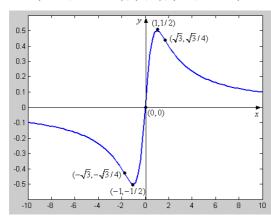
習題 3-4

- 1. 相對極大點: (0,0),
 - 相對極小點: (-2,-16),(2,-16),

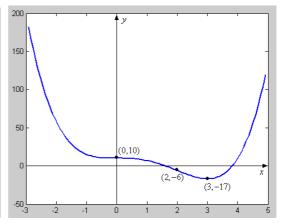

反曲點: $(\pm \frac{2\sqrt{3}}{3}, -\frac{80}{9})$

3. 相對極大點: (2,3√√4),

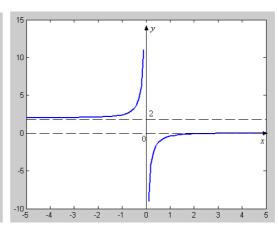
相對極小點: (0,0),


反曲點: (-1,6)

5. 相對極大點: (1,1/2),

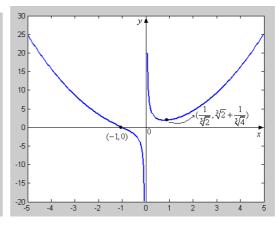

相對極小點: (-1,-1/2), 反曲點

 $: (-\sqrt{3}, -\sqrt{3}/4), (0,0), (\sqrt{3}, \sqrt{3}/4)$

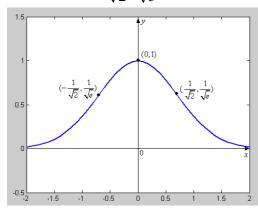


2. 相對極小點: (3,-17),

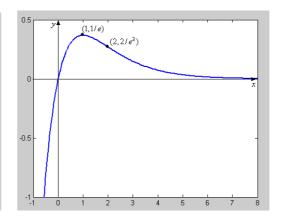
反曲點: (0,10),(2,-6)



4. 無極值點及反曲點。


6. 相對極小點: $(\frac{1}{\sqrt[3]{2}}, \sqrt[3]{2} + \frac{1}{\sqrt[3]{4}})$,

反曲點: (-1,0)


7. 相對極大點: (0,1),

反曲點: $(\pm \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{e}})$

8. 相對極大點: (1,1/e),

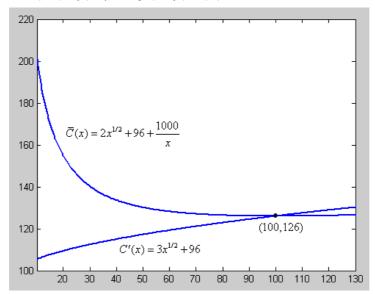
反曲點: $(2,2/e^2)$

9. 相對極小點: (1,1/2)

10. 略

習題 3-5

- 1. 42 呎/秒 2. $-\frac{3}{10}$ 安培/歐姆 3. 25 °C/分
- 4. 加速度為12公尺/秒²,速度為4公尺/秒 5. 略
- 6. 頂端以 $\frac{13}{8}$ 公尺/分之速度下降 7. $6\sqrt{5}$ 公尺/秒 8. $\frac{1}{2\pi}$ 公尺/分
- 9. (1) $\frac{dA}{dt} = 2\pi r \frac{dr}{dt}$ (2) $3\pi \text{ cm}^2/\text{sec}$
- 10. (1) $\frac{dV}{dt} = \pi (2rh\frac{dr}{dt} + r^2\frac{dh}{dt})$ (2) -20π cm³/sec ,體積在減少中。


習題 3-6

- 1. 當消費人工 25 個單位與材料 50 個單位時,可使生產量達到最大。 2. 10
- 3. $\overline{C}'(x) = 3 \frac{120}{r^3} \frac{1}{r^2}$ 4. 5 5. 4 6. (1) -4x + 24 (2)4 (3) 利潤函數:

 $-2x^2 + 20x - 14$, 邊際利潤函數: -4x + 20 (4) 當生產與銷售為 5 個單位時, 總利潤可達最大, 此時銷售價格為 p = 24 - 2(5) = 14 (5) 當生產與銷售為 4 個單位

時,總利潤可達最大,此時銷售價格為p = 24 - 2(4) = 16。

- 7. 當生產水準為 $\frac{14+\sqrt{151}}{3}$ 單位時,可使利潤達到最大。
- 8. 當生產水準為 ln 3 單位時,可使利潤達到最大。
- 9. 當生產100個單位時,總利潤可達最大。
- 10.(1)當生產水準為100時,每單位之平均成本為最小(2)當生產水準為100時,每單位之平均成本等於邊際成本(3)

- 11. 當生產水準為 100 時,將會使平均成本為最小,且最小之平均成本為 230。
- 12. 當生產水準為 10 時,將會使平均成本為最小,且最小之平均成本為 246。

13. 略 14.
$$\frac{p}{90-p}$$

15. 當
$$E_C < 1$$
 時(即 $0 < x < 100$), $\frac{d\bar{C}(x)}{dx} < 0$,則 x 增加時,平均成本 $\bar{C}(x)$ 減少。 當 $E_C = 1$ 時(即 $x = 100$), $\frac{d\bar{C}(x)}{dx} = 0$ 。因而 $\bar{C}(100) = 126$ 為最小平均成本。 當 $E_C > 1$ 時(即 $100 \le x$), $\frac{d\bar{C}(x)}{dx} > 0$,則 x 增加時,平均成本 $\bar{C}(x)$ 亦增加。

16.
$$E_R = 2 - \frac{3000}{x}$$

(1) 當
$$x > 1500$$
 ,則 $p < 45$, $E_R > 0 \Rightarrow E_p < 1$, $\frac{dR}{dp} > 0$
所以,當 $p < 45$ 時,總收益遞增,需求不富彈性。

(2) 當
$$x < 1500$$
 ,則 $p > 45$, $E_R < 0 \Rightarrow E_p > 1, \frac{dR}{dp} < 0$

所以,當p>45時,總收益遞減,需求富彈性。

習題 3-7

1. 5,5 2. 8,8 3. 當 $x = a/\sqrt{2}$ 時有最大面積 2ab。

4. 設圓柱形的底半徑為r,高為h,則當r=h時最經濟。

5. 最大容積為450 cm³ 6. (1,±1) 7. 底圓半徑為
$$\sqrt{\frac{5+\sqrt{5}}{10}}a$$

8. 圓柱底半徑為
$$\sqrt[3]{\frac{500}{\pi}}$$
 cm ,高為 $2\sqrt[3]{\frac{500}{\pi}}$ cm 。

習題 3-8

1.
$$\Delta y \approx 1.0$$
 2. $dy = 3(2x^3 + 4x^2 - 5)^2 (6x^2 + 8x) dx$ 3. $dy = \frac{2(u^4 - 1)(3u^4 + 1)}{u^3} du$

4.
$$dy = (3t^2 - \frac{t}{\sqrt{t^2 + 1}})dt$$
 5. $du = \frac{1}{x}dx$ 6. 0.051 7. 0.111934 8. 0.50151 9. 0.1

10.
$$\frac{dy}{dx} = -\frac{\sqrt{y}}{\sqrt{x}}$$
 11. $\frac{dy}{dx} = \frac{3x^2 - 3x^2y^2 - 2y^3}{2x^3y + 6xy^2 + 4y^3}$ 12. 10π cm³ 13. 9.72 cm³

習題 3-9

1. 1 2. 9 3. ∞ 4. 1 5. $-\infty$ 6. e^2 7. 1 8. 1 9. 1/2 10. 1/2 11. e^2 12. 5 13. $e^{1/2}$ 14. 1/2 15. e^a 16. 1/6 17. 0 18. e^{ab}

習題 3-10

1. -1.2339

n	\mathcal{X}_n	$f(x_n)$	$f'(x_n)$	\mathcal{X}_{n+1}
0	-1.00000	1.00000	3.00000	-1.33333
1	-1.33333	-0.62963	7.00000	-1.24338
2	-1.24338	-0.05518	5. 78928	-1.23386
3	-1. 23386	-0.00058		

2. 1.2838

n	\mathcal{X}_n	$f(x_n)$	$f'(x_n)$	\mathcal{X}_{n+1}
0	1.00000	-2.00000	5.00000	1.40000
1	1.40000	1.24160	11.97600	1. 29633
2	1. 29633	0.12027	9.71370	1. 28394
3	1. 28394	0.00154	9.46639	1. 28378
4	1. 28378	0.00000		

3. 1.14642

n	\mathcal{X}_n	$f(x_n)$	$f'(x_n)$	X_{n+1}
0	1.00000	-0. 28172	1. 71828	1. 16395
1	1.16395	0.03862	2. 20257	1.14642
2	1.14642	0.00049		

4. 2.9884

n	\mathcal{X}_n	$f(x_n)$	$f'(x_n)$	\mathcal{X}_{n+1}
0	3.00000	0.01001	0.85888	2. 98835
1	2. 98835	0.00007		

5. 2.2361 6. 1.1225 7. 0.9933 8. 1.7455