19. The slope of the line through A and B is  $\frac{-10-(-2)}{-3-1} = \frac{-8}{-4} = 2$ .

The slope of the line through C and D is  $\frac{1-5}{-1-1} = \frac{-4}{-2} = 2$ .

Since the slopes of these two lines are equal, the lines are parallel.

21. The slope of the line through A and B is  $\frac{2-5}{4-(-2)} = -\frac{3}{6} = -\frac{1}{2}$ .

The slope of the line through C and D is  $\frac{6-(-2)}{3-(-1)} = \frac{8}{4} = 2$ . Since the slopes of these

two lines are the negative reciprocals of each other, the lines are perpendicular.

27. We use the point-slope form of an equation of a line with the point (3,-4) and

slope 
$$m = 2$$
. Thus and

$$y - y_1 = m(x - x_1),$$
  
 $y - (-4) = 2(x - 3)$ 

$$y = (-4) = 2(x - 6)$$
  
 $y + 4 = 2x - 6$ 

$$y = 2x - 10.$$

31. We first compute the slope of the line joining the points (2,4) and (3,7). Thus,

$$m = \frac{7-4}{3-2} = 3$$
.

Using the point-slope form of an equation of a line with the point (2,4) and slope m=3, we find

$$y-4=3(x-2)$$
  
 $y=3x-2.$ 

- 35. We use the slope-intercept form of an equation of a line: y = mx + b. Since m = 3, and b = 4, the equation is y = 3x + 4.
- 41. We write the equation in slope-intercept form:

$$2x - 3y - 9 = 0$$

$$-3y = -2x + 9$$

$$y = \frac{2}{3}x - 3.$$

From this equation, we see that m = 2/3 and b = -3.

45. We first write the equation 
$$2x - 4y - 8 = 0$$
 in slope- intercept form:

$$2x - 4y - 8 = 0$$

$$4y = 2x - 8$$

$$y = \frac{1}{2}x - 2$$

Now the required line is parallel to this line, and hence has the same slope. Using the point-slope equation of a line with m = 1/2 and the point (-2,2), we have

$$y - 2 = \frac{1}{2}[x - (-2)]$$
$$y = \frac{1}{2}x + 3.$$

46. We first write the equation 
$$3x + 4y - 22 = 0$$
 in slope-intercept form:

$$3x + 4y - 22 = 0$$

$$4y = -3x + 22$$

$$y = -\frac{3}{4}x + \frac{22}{4}$$
.

Now the required line is perpendicular to this line, and hence has slope 4/3 (the negative reciprocal of -3/4). Using the point-slope equation of a line with m = 4/3 and the point (2,4), we have

$$y - 4 = \frac{4}{3}(x - 2)$$

$$y = \frac{4}{3}x + \frac{4}{3}$$

$$m = \frac{8-2}{6-(-3)} = \frac{6}{9} = \frac{2}{3}$$

We also know that the required line passes through (-5,-4). Using the point-slope form of an equation of a line, we find

$$y-(-4)=\frac{2}{3}(x-(-5))$$

$$y = \frac{2}{3}x + \frac{10}{3} - 4$$
; that is  $y = \frac{2}{3}x - \frac{2}{3}$ 

53. Since the point 
$$(-3,5)$$
 lies on the line  $kx + 3y + 9 = 0$ , it satisfies the equation. Substituting  $x = -3$  and  $y = 5$  into the equation gives

$$-3k+15+9=0$$
, or  $k=8$ .

63. Using the equation 
$$\frac{x}{a} + \frac{y}{b} = 1$$
 with  $a = -2$  and  $b = -4$ , we have  $-\frac{x}{2} - \frac{y}{4} = 1$ .

Then

$$-4x - 2y = 8$$

$$2y = -8 - 4x$$

$$v = -2x - 4$$
.

## 83. Writing each equation in the slope-intercept form, we have

$$y = -\frac{a_1}{b_1}x - \frac{c_1}{b_1}$$
  $(b_1 \neq 0)$  and  $y = -\frac{a_2}{b_2}x - \frac{c_2}{b_2}$   $(b_2 \neq 0)$ 

Since two lines are parallel if and only if their slopes are equal, we see that the

lines are parallel if and only if 
$$-\frac{a_1}{b_1} = -\frac{a_2}{b_2}$$
, or  $a_1b_2 - b_1a_2 = 0$ .