EXERCISES 2.5, page 127

- 1. $\lim_{x \to 2^{-}} f(x) = 3$, $\lim_{x \to 2^{+}} f(x) = 2$, $\lim_{x \to 2} f(x)$ does not exist.
- 3. $\lim_{x \to -1^-} f(x) = \infty$, $\lim_{x \to -1^+} f(x) = 2$. Therefore $\lim_{x \to -1} f(x)$ does not exist.
- 25. $\lim_{x\to 0^+} \frac{1}{x}$ does not exist because $1/x\to\infty$ as $x\to 0$ from the right.

30.
$$\lim_{x \to 2^+} 2\sqrt{x-2} = 2 \cdot 0 = 0.$$

34.
$$\lim_{x \to 1^+} \frac{1+x}{1-x} = -\infty$$
.

40.
$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (2x+3) = 3$$
, $\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} (-x+1) = 1$.

- il. f is continuous for all values of x.
- 53. f is continuous for all values of x. Note that $x^2 + 1 \ge 1 > 0$.
- 60. Observe that $\lim_{x \to -1^{-}} f(x) = \lim_{x \to -1^{-}} (-x+1) = 2 \neq \lim_{x \to -1^{+}} f(x) = \lim_{x \to -1^{+}} (x+1) = 0$, and so f is discontinuous at x = -1.
- 66. f is not defined at x = 1 and is discontinuous there. It is continuous everywhere else.

83. We require that
$$f(1) = 1 + 2 = 3 = \lim_{x \to 1^+} kx^2 = k$$
, or $k = 3$.

84. Since
$$\lim_{x \to -2} \frac{x^2 - 4}{x + 2} = \lim_{x \to -2} \frac{(x - 2)(x + 2)}{x + 2} = \lim_{x \to -2} (x - 2) = -4$$
, we define $f(-2) = k = -4$, that is, take $k = -4$.

97. False. Take

Talse. Take
$$f(x) = \begin{cases} -1 & \text{if } x < 2 \\ 4 & \text{if } x = 2 \\ 1 & \text{if } x > 2 \end{cases}$$
Then $f(2) = 4$ but $\lim_{x \to 2}$ does not exist.

- 98. False. Take $f(x) = \begin{cases} x+3 & \text{if } x \neq 0 \\ 1 & \text{if } x = 0 \end{cases}$. Then $\lim_{x \to 0} f(x) = 3$, but f(0) = 1.
- 99. False. Consider the function $f(x) = x^2 1$ on the interval [-2, 2]. Here, f(-2) = f(2) = 3, but f has zeros at x = -1 and x = 1.
- 103. False. Take $f(x) = \begin{cases} \frac{1}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$. Then f is continuous for all $x \neq 0$ but $\lim_{x\to 0} f(x)$ does not exist.
- 105. True. Since the number 2 lies between f(-2) = 3 and f(3) = 1, the intermediate value theorem guarantees that there exists at least one number $-2 \le c \le 3$ such that f(c) = 2.
- 107. a. Both g(x) = x and $h(x) = \sqrt{1 x^2}$ are continuous on [-1,1] and so $f(x) = x - \sqrt{1 - x^2}$ is continuous on [-1,1]. b. f(-1) = -1 and f(1) = 1 and so f has at least one zero in (-1,1).
 - c. Solving f(x) = 0, we have $x = \sqrt{1 x^2}$, $x^2 = 1 x^2$, $2x^2 = 1$, or $x = \frac{\pm \sqrt{2}}{2}$.