10.
$$2x^2 + y^2 = 16$$
, $4x + 2y \frac{dy}{dx} = 0$ and $\frac{dy}{dx} = -\frac{2x}{y}$.

- 14. $x^2 + 5xy + y^2 = 10$. Differentiating both sides of the equation implicitly, we obtain 2x + 5y + 5xy' + 2yy' = 0, 2x + 5y + y'(5x + 2y) = 0 and so $y' = -\frac{2x + 5y}{5x + 2y}$.
- 16. $x^2y^3 2xy^2 = 5$. Differentiating both sides of the equation implicitly, we obtain $2xy^3 + 3x^2y^2y' 2y^2 4xyy' = 0$, $2y^2(xy 1) + xy(3xy 4)y' = 0$, So $y' = \frac{2y(1 xy)}{x(3xy 4)}.$
- 18. $x^{1/3} + y^{1/3} = 1$. Differentiating both sides of the equation implicitly, we obtain $\frac{1}{3}x^{-2/3} + \frac{1}{3}y^{-2/3}y' = 0$ and so $y' = -\frac{x^{-2/3}}{y^{-2/3}} = -\frac{y^{2/3}}{x^{2/3}} = -\left(\frac{y}{x}\right)^{2/3}$.
 - 19. $\sqrt{x+y} = x$. Differentiating both sides of the equation implicitly, we obtain $\frac{1}{2}(x+y)^{-1/2}(1+y') = 1$, $1+y' = 2(x+y)^{1/2}$, or $y' = 2\sqrt{x+y} 1$.
 - 23. $\sqrt{xy} = x + y$. Differentiating both sides of the equation implicitly, we obta $\frac{1}{2}(xy)^{-1/2}(xy'+y) = 1 + y'$ $xy' + y = 2\sqrt{xy}(1+y')$ $y'(x-2\sqrt{xy}) = 2\sqrt{xy} y$ or $y' = -\frac{(2\sqrt{xy} y)}{(2\sqrt{xy} x)} = \frac{2\sqrt{xy} y}{x 2\sqrt{xy}}.$
- 25. $\frac{x+y}{x-y} = 3x$, or $x+y = 3x^2 3xy$. Differentiating both sides of the equation implicitly, we obtain 1+y' = 6x 3xy' 3y or $y' = \frac{6x 3y 1}{3x + 1}$.
- 30. $(x+y^2)^{10} = x^2 + 25$. Differentiating both sides of the equation with respect to x, we obtain $10(x+y^2)^9(1+2yy') = 2x$, or $y' = \frac{x-5(x+y^2)^9}{10y(x+y^2)^9}$.

- 32. $y^2 x^2 = 16$. Differentiating both sides of the equation implicitly, we obtain 2yy' 2x = 0. At the point $(2, 2\sqrt{5})$, we have $4\sqrt{5}y' 4 = 0$, or $m = \frac{1}{\sqrt{5}} = \frac{\sqrt{5}}{5}$. Using the point–slope form of an equation of a line, we have $y = \frac{\sqrt{5}}{5}x + \frac{8\sqrt{5}}{5}$.
- 42. $p = \frac{1}{2}x^2 + 48$. Differentiating implicitly, we have

$$\frac{dp}{dt} - x\frac{dx}{dt} = 0, \text{ and } -x\frac{dx}{dt} = -\frac{dp}{dt}, \text{ or } \frac{dx}{dt} = \frac{\frac{dp}{dt}}{x}.$$
When $x = 6$, $p = 66$, and $\frac{dp}{dt} = -3$, we have $\frac{dx}{dt} = -\frac{3}{6} = -\frac{1}{2}$, or $\left(-\frac{1}{2}\right)(1000) = -500$ tires/week.

43. $100x^2 + 9p^2 = 3600$. Differentiating the given equation implicitly with respect to t, we have $200x\frac{dx}{dt} + 18p\frac{dp}{dt} = 0$. Next, when p = 14, the given equation yields $100x^2 + 9(14)^2 = 3600$ $100x^2 = 1836$,

or x = 4.2849. When p = 14, $\frac{dp}{dt} = -0.15$, and x = 4.2849, we have $200(4.2849) \frac{dx}{dt} + 18(14)(-0.15) = 0$

$$\frac{dx}{dt} = 0.0441.$$

So the quantity demanded is increasing at the rate of 44 ten-packs per week.

48.
$$V = x^3$$
. $\frac{dV}{dt} = 3x^2 \frac{dx}{dt} \Rightarrow \frac{dV}{dt} = 3(25)(0.1) = 7.5$ cu in/sec.

60. Differentiating $x^2 + y^2 = 400$ with respect to t gives $2x \frac{dx}{dt} + 2y \frac{dy}{dt} = 0$. When x = 12, we have $144 + y^2 = 400$, or $y = \sqrt{256} = 16$. Therefore, with x = 12, $\frac{dx}{dt} = 5$, and y = 16, we find $2(12)(5) + 2(16) \frac{dy}{dt} = 0$, or $\frac{dy}{dt} = -3.75$, that is, the top of the ladder is sliding down the wall at 3.75 ft/sec.