The Linear Programming-the Simplex Algorithm

Linear Programming (LP)(線性規劃) is a tool for solving optimization problems. In 1947, **George Dantzig** developed an efficient method, the **simplex algorithm**(單形法), for solving linear programming problems. Since the development of the simplex algorithm, LP has been used to solve optimization problems in industries are diverse as banking, education, forestry, petroleum, and trucking. In a survey of Fortune 500 firms, 85% of the respondents said they had used LP. As a measure of the importance of LP in OR, approximately 70% of this book will be devoted to LP and related optimization techniques.

We devote to a discussion of the **simplex algorithm**, which is used to solve even very large LPs. In many industrial applications, the simplex algorithm is used to solve LPs with thousands of constraints and variables. We should explain how the simplex algorithm can be used to find optimal solutions to LPs., and detail how two state-of-the-art computer packages (LINDO) can be used to solve LPs.

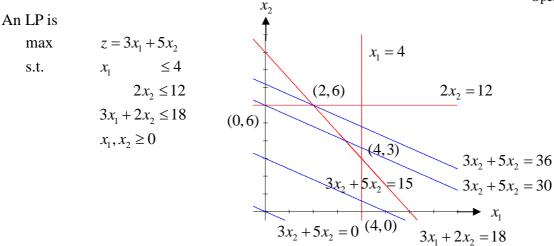
Type 1: Graphical Solution(圖解法)

Example:

The WYNDOR GLASS CO. produces high-quality glass products, including windows and glass doors. It has three plants. Aluminum frames and hardware are made in Plant 1, wood frame are madder in Plant 2, and Plant 3 produces the glass and assembles the products.

Because of declining earnings, top management has decided to revamp the company's product line. Unprofitable products are being discontinued, releasing production capacity to launch two new products having large sales potential:

Product 1: An 8-foot glass door with aluminum framing.


Product 2: A 4x6 foot double-hung wood-framed window.

	Production Time	per Batch, Hours						
	Pro	duct	Production Time Available					
Plant	1	2	per Week, Hours					
1	1	0	4					
2	0	2	12					
3	3	2	18					
Profit per batch	\$3000	\$5000						

Solution: We define

 x_1 = number of batches of product 1 produced per week

 x_2 = number of batches of product 2 produced per week

The solution indicates that the Wyndor Glass Co. should produce products 1 and 2 at the rate of 2 batches per week and 6 batches per week, respectively, with a resulting total profit of \$36000 per week.

Terminology for Solutions of the Model

- 1. A feasible solution(可行解) is a solution for which all the constraints are satisfied.
- 2. An **infeasible solution**(不可行解) is a solution for which at least one constraint is violated.
- 3. The feasible region(可行解區域) is the collection of all feasible solutions.
- 4. An **optimal solution**(最佳解) is a feasible solution that has the most favorable value of the objective function.
- 5. A **corner-point feasible** (**CPF; basic feasible**)(基本可行解) solution is a solution that lies at a corner of the feasible region.

Relationship between optimal solutions and CPF solutions

Consider any linear programming problem with feasible solutions and a bounded feasible region. The problem must posses CPF solutions and **at least** one optimal solution. Furthermore, the **best CPF solution must be an optimal solution**. Thus, if a problem has exactly one optimal solution, it must be a CPF solution. If the problem has multiple optimal solutions, at least two must be CPF solution.

The solution for Linear Programming:

- 1. Uniquely optimal solution(唯一解)
- 2. Multiple optimal solutions(無限多組解)
- 3. Unbounded(無界)
- 4. No feasible solution(無可行解)

Assumptions of Linear Programming:

- 1. **Proportionality**(可比例性)—非線性規劃(Nonlinear Programming)
- 2. Additivity(可加性) 非線性規劃(Nonlinear Programming)
- 3. Divisibility(可分性) 整數規劃(Integer Programming)
- 4. Certainty(確定性) 隨機模式(Stochastic Model)

Operations Research

Type 2: Simplex method(單形法)

Convert an LP to Standard Form

We have seen that an LP can have both **equality and inequality constraints**. It also can have **variables** that are require to be **nonnegative** as well as those allowed to be **unrestricted in sign**. Before the simplex algorithm can be used to solve an LP, the LP must be converted into an equivalent problem in which **all constraints are equation** and **all variables are nonnegative**. An LP in this form is said to be in standard form.

Standard Form

max(or min) $z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$ s.t. $a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n = b_1$ $a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n = b_2$ \vdots \vdots \vdots $a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n = b_m$ $x_i \ge 0 (i = 1, 2, \dots, n)$

Example Leather Limited

Leather Limited manufacturers two types of belts(腰帶): the deluxe(高級的)model and the regular model. Each type requires 1 sq yd of leather(皮革). A regular belt requires 1 hour of skilled labor, and a deluxe belt requires 2 hours. Each week, 40 sq yd of leather and 60 hours of skilled labor are available. Each regular belt contributes \$3 to profit and each deluxe belt, \$4. If we define

 x_1 = number of deluxe belts produced weekly

 x_2 = number of regular belts produced weekly

An LP is

$z = 4x_1 + 3x_2$
$x_1 + x_2 \le 40$
$2x_1 + x_2 \le 60$
$x_1, x_2 \ge 0$

A standard form of LP is max

max s.t.

$z = 4x_1 + 3$	x_2	
$x_1 + x_2 + $	<i>s</i> ₁ =	40
$2x_1 + x_2$	$+ s_{2} =$	60
x_1, x_2, s_1, s_2	≥ 0	

Example

An LP is

min

$$z = 50x_{1} + 20x_{2} + 30x_{3} + 80x_{4}$$
s.t.

$$400x_{1} + 200x_{2} + 150x_{3} + 500x_{4} \ge 500$$

$$3x_{1} + 2x_{2} \ge 6$$

$$2x_{1} + 2x_{2} + 4x_{3} + 4_{4} \ge 10$$

$$2x_{1} + 4x_{2} + x_{3} + 5_{4} \ge 8$$

$$x_{1}, x_{2}, x_{3}, x_{4} \ge 0$$

A standard form of LP is

min
s.t.

$$z = 50x_1 + 20x_2 + 30x_3 + 80x_4$$

$$400x_1 + 200x_2 + 150x_3 + 500x_4 - e_1 = 500$$

$$3x_1 + 2x_2 - e_2 = 6$$

$$2x_1 + 2x_2 + 4x_3 + 4_4 - e_3 = 10$$

$$2x_1 + 4x_2 + x_3 + 5_4 - e_4 = 8$$

$$x_1, x_2, x_3, x_4, e_1, e_2, e_3, e_4 \ge 0$$

Preview of the Simplex Algorithm

$$z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$

$$a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n = b_1$$

$$a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n = b_2$$

$$\vdots \qquad \vdots$$

$$a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n = b_m$$

$$x_i \ge 0 (i = 1, 2, \dots, n)$$

Matrix Form:

 $\begin{array}{ll} \max & z = C^T X \\ \text{s.t.} & AX = b \\ & X \ge 0 \end{array}$

where

$$C^{T} = \begin{bmatrix} c_{1} \\ c_{2} \\ \vdots \\ c_{n} \end{bmatrix}, A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, X = \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix}, \text{ and } b = \begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{m} \end{bmatrix}$$

Basic Properties of Liner Programming

Consider the system of equalities

$$AX = b$$

where X is an *n*-vector, b an *m*-vector, and A is an $m \times n$ matrix. Suppose that from the *n* columns of A we select a set of *m* linearly independent columns (such a set exists if the rank of A is *m*). For notational simplicity assume that we select the first *m* columns of A and denote the $m \times m$ matrix determined by these columns by B. The matrix B is then nonsingular and we may **uniquely** solve the equation

$$BX_{B} = b$$

for the *m* vector X_B . By putting $X = (X_B, \vec{0})$ (that is, setting the first *m* components of *X* equal to those of X_B and the remaining components equal to zero), we obtain a solution to AX = b. This leads to the following definition.

Definition of Basic Variable

Given the set of *m* simultaneous linear equations in *n* unknowns AX = b, let *B* be any nonsingular $m \times m$ submatrix made up of columns of *A*. Then, if all m-ncomponents of *X* not associated with columns of *B* are set equal to zero, the solution to the resulting set of equations is said to be a **basic solution**(基解) to (1) with respect to the basis *B*. The components of *X* associated with columns of *B* are called **basic variables(BV, 基變數)**, otherwise are called **nonbasic variables(NBV, 非基變數)**.

To find a basic solution to AX = b, we choose a set of n-m variables (the **nonbasic variables**, or **NBV**(非基變數)) and set each of these variables equal to 0. Then we solve for the values of the remaining *m* variables (the basic variables, BV) that satisfy AX = b.

Example:

 $x_1 + x_2 = 3$

$$-x_2 + x_3 = -1$$

If NBV = $\{x_3\}$, then BV = $\{x_1, x_2\}$. We obtain the values of the basic variables by setting $x_3 = 0$ and solving

$$x_1 + x_2 = 3$$
$$-x_2 = -1$$

We find that $x_1 = 2, x_2 = 1$.

Definition of Feasible and Basic Feasible Solution

A vector X satisfying AX = b and $X \ge 0$ is said to the **feasible solution**(可行解) for these constraints.

A feasible solution to the constraints AX = b and $X \ge 0$ that is also basic solution is said to be a **basic feasible solution(bfs; 基本**可行解).

Corresponding to a linear program in standard form

max(or min)	$z = C^T X$
s.t.	AX = b
	$X \ge 0$

a feasible solution to the constraints that achieves the maximum (or minimum) value of the objective function subject to those constraints is said to be an **optimal feasible solution**. If this solution is basic, it is an **optimal basic feasible solution**.

Theorem (Fundamental Theorem of Linear Programming)

Given a linear programming in standard form where A is an $m \times n$ matrix of rank m.

(1) If there is a feasible solution, there is a basic feasible solution.

(2) If there is an optimal feasible solution, there is an optimal basic feasible solution.

Proof: (See Appendix 1)

Remark:

This theorem reduces the task of solving a linear programming problem to that of searching over basic feasible solutions. Since for a problem having n variables and m constraints there are at most

$$C_m^n = \frac{n!}{m!(n-m)!}$$

basic solutions, there are only a finite number of possibilities.

Definition of Convex

A set *C* in E^n is said to be **convex**(**凸**集合) if for every $x_1, x_2 \in C$ and every real

number α , $0 < \alpha < 1$, the point $\alpha x_1 + (1-\alpha)x_2 \in C$.

Definition of Half Space

Let *a* be a nonzero vector in E^n and let *c* a real number. Corresponding to the **hyperplane**(半平面) $H = \{x : a^T x = c\}$ are the positive and negative **closed half spaces**

$$H_{+} = \{x : a^{T} x \ge c\}$$
$$H_{-} = \{x : a^{T} x \le c\}$$

and the positive and negative open half spaces

$$H_{+} = \{x : a^{T}x > c\}$$
$$H_{-} = \{x : a^{T}x < c\}$$

Definition of Polytope

A set which can be expressed as the intersection of a finite number of closed half spaces is said to be a **convex polytope**.

Definition of Extreme Point

A point x in a convex set C is said to be an **extreme point**(極點) of C if there are no two distinct points x_1 and x_2 in C such that $x = \alpha x_1 + (1 - \alpha)x_2$ for some α , $0 < \alpha < 1$.

Theorem (Equivalence of Extreme Points and Basic Feasible Solution)

Let A be an $m \times n$ matrix of rank m and b an m-vector. Let K be the convex polytope consisting of all n-vectors X satisfying

$$AX = b$$
$$X \ge 0$$

A vector X is an **extreme point** of K if and only if X is a **basic feasible solution** to AX = b and $X \ge 0$.

Proof: (See the Appendix 2)

Corollary:

If the convex *K* corresponding to AX = b and $X \ge 0$ is **nonempty**, it has at least one extreme point.

Corollary:

If there is a finite optimal solution to a linear programming problem, there is a finite optimal solution which is an extreme point of the constraint set.

Corollary:

The constraint set K corresponding to AX = b and $X \ge 0$ possesses at most a finite

number of extreme points.

Proof:

There are obviously only a finite of basic solutions obtained by selecting m basis vectors from the n columns of A. The extreme points of K are a subset of these basic solutions.

Example:

	max	$z = 4x_1 + 3x_2$	ma	ax	$z = 4x_1 + 3x_2$
	s.t.	$x_1 + x_2 \le 40$	s.t	t.	$x_1 + x_2 + s_1 = 40$
		$2x_1 + x_2 \le 60$			$2x_1 + x_2 + s_2 = 60$
		$x_1, x_2 \ge 0$			$x_1, x_2, s_1, s_2 \ge 0$
Basic		Nonbasic Variables	Basic Feasible Solution		Corresponds to Corner Point
Variables					
x_1, x_2	-	<i>s</i> ₁ , <i>s</i> ₂	$x_1 = x_2 = 20$		E
x_1, s_1		x_2, s_2	$x_1 = 30, s_1 = 10$		C
x_1, s_2		x_2, s_1	$x_1 = 40, s_2 = -20$		Not a bfs
x_2, s_1		x_1, s_2	$x_2 = 60, s_1 = -20$		Not a bfs
x_2, s_2		<i>x</i> ₁ , <i>s</i> ₁	$x_2 = 40, s_2 = 20$		В
s_1, s_2		<i>x</i> ₁ , <i>x</i> ₂	$s_1 = 40, s_2 = 60$		F

Adjacent Basic Feasible Solutions

For any LP with *m* constraints, two basic feasible solutions are said to be **adjacent**(相 4) if their sets of basic variables have m-1 basic variables in common.

Example:

max	$z = 4x_1 + 3x_2$
s.t.	$x_1 + x_2 + s_1 = 40$
	$2x_1 + x_2 + s_2 = 60$
	$x_1, x_2, s_1, s_2 \ge 0$

The basic feasible solutions (0,0,40,60), (30,0,10,0) are adjacent. The basic feasible solutions (30,0,10,0), (20,20,0,0) are adjacent. The basic feasible solutions (20,20,0,0), (0,40,20,0) are adjacent. The basic feasible solutions (0,0,40,60), (20,20,0,0) are not adjacent.

The Simplex Algorithm

Step 1: Convert the LP to standard form.

max
$$z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$

s.t. $a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n = b_1$
 $a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n = b_2$
 \vdots \vdots \vdots \vdots
 $a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n = b_n$
 $x_i \ge 0 (i = 1, 2, \dots, n)$

Step 2: Obtain a bfs (if possible) from the standard form.

Step 3: Determine whether the current bfs is optimal.

If the $\overline{c}_i \ge 0$, then current basic feasible solution is optimal, stop.

Step 4: If the current bfs is not optimal, then determine which nonbasic variable should become a basic variable and which basic variable should become a nonbasic variable to find a new bfs with a better objective function value.

Select x_q such that $\overline{c}_q = \min\{\overline{c}_j | \overline{c}_j < 0, x_j \text{ is a nonbasic variable}\}$ to determine which nonbasic variable is to become basic.

Calculuate the ratio $\frac{\overline{b}_i}{\overline{a}_{ij}}$ for $\overline{a}_{ij} > 0$, $i = 1, 2, \dots, m$. If no $\overline{a}_{ij} > 0$, stop; the problem is

unbounded. Otherwise, select p as the index i corresponding to the minimum ratio.

Step 5: Use EROs to find the new bfs with the better objective function value. Go back to step 3. Pivot on the pqth element, updating all rows including the last.

Example: max s.t. $z = 60x_1 + 30x_2 + 20x_3$ $8x_1 + 6x_2 + x_3 \le 48$ $4x_1 + 2x_2 + 1.5x_3 \le 20$ $2x_1 + 1.5x_2 + 0.5x_3 \le 8$ $x_2 \le 5$ $x_1, x_2, x_3 \ge 0$

Convert the standard form:

max
$$z - 60x_1 - 30x_2 - 20x_3 = 0$$

s.t. $8x_1 + 6x_2 + x_3 + s_1 = 48$
 $4x_1 + 2x_2 + 1.5x_3 + s_2 = 20$
 $2x_1 + 1.5x_2 + 0.5x_3 + s_3 = 8$
 $x_2 + s_4 = 5$
 $x_1, x_2, x_3, s_1, s_2, s_3, s_4 \ge 0$

Use the Tabular Form:

variable	x_1	<i>x</i> ₂	<i>x</i> ₃	<i>S</i> ₁	<i>s</i> ₂	<i>s</i> ₃	<i>s</i> ₄	RHS	Ratio
Z.	-60	-30	-20	0	0	0	0	0	
<i>S</i> ₁	8	6	1	1	0	0	0	48	48/8=6
<i>s</i> ₂	4	2	1.5	0	1	0	0	20	20/4=5
<i>s</i> ₃	2	1.5	0.5	0	0	1	0	8	4/2=4
<i>s</i> ₄	0	1	0	0	0	0	1	5	*

Since $\min\{-60, -30, -20\} = -60$, then x_1 enter the basic variable.

Since $\min\{6, 5, 4, *\} = 4$, then s_3 leave the basic variable

voriabla	r	r	r	5	c .	6	5	RHS	Ratio
variable	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<u>s</u> 1	<i>s</i> ₂	<i>s</i> ₃	<i>S</i> ₄		Katio
Z.	0	15	-5	0	0	30	0	240	
<i>s</i> ₁	0	0	-1	1	0	-4	0	16	*
<i>s</i> ₂	0	-1	0.5	0	1	-2	0	4	4/0.5=8
<i>x</i> ₁	1	0.75	0.25	0	0	0.5	0	4	4/0.25=16
<i>s</i> ₄	0	1	0	0	0	0	1	5	*
Since min	$n\{-5\} =$	=-5, then	<i>x</i> ₃ e	enter the	basic va	riable.			
Since min	n{*,8,1	$6, * \} = 8, 1$	then s_2	leave th	ne basic v	ariable			
variable	x_1	<i>x</i> ₂	<i>x</i> ₃	<i>S</i> ₁	<i>s</i> ₂	<i>s</i> ₃	<i>s</i> ₄	RHS	Ratio
Ζ.	0	5	0	0	10	10	0	280	
<i>s</i> ₁	0	-2	0	1	2	-8	0	24	
<i>x</i> ₃	0	-2	1	0	2	-4	0	8	
x_1	1	1.25	0	0	-0.5	1.5	0	2	
<i>s</i> ₄	0	1	0	0	0	0	1	5	
Hence, x_1	$=2, x_2$	$=0, x_3 = 8$	$3, x_4 = 0, x_4 = 0$	z = 280					

Example: (Using the Simplex Algorithm to Solve **Minimization** Problems)

min s.t. $z = 2x_1 - 3x_2$ $x_1 + x_2 \le 4$ $x_1 - x_2 \le 6$ $x_1, x_2 \ge 0$ Convert the standard form:

max s.t. $-z + 2x_1 - 3x_2 = 0$ $x_1 + x_2 + s_1 = 4$ $x_1 - x_2 + s_2 = 6$ $x_1, x_2, s_1, s_2 \ge 0$

Use the Tabular Form:

variable	x_1	<i>x</i> ₂	s ₁	<i>s</i> ₂	RHS	Ratio
- <i>z</i> .	2	-3	0	0	0	
<i>S</i> ₁	1	1	1	0	4	4/1=4
<i>s</i> ₂	1	-1	0	1	6	*

Since $\min\{-3\} = -3$, then x_2 enter the basic variable.

Since $\min\{4, *\} = 4$, then	<i>s</i> ₁	leave the basic variable

variable	x_1	x_2	S_1	<i>S</i> ₂	RHS	Ratio
-z	5	0	3	0	12	
<i>x</i> ₂	1	1	1	0	4	
<i>s</i> ₂	2	0	1	1	10	
	^					

Hence, $x_1 = 0, x_2 = 4, z = -12$.

Example: (Alternative Optimal Solutions)

max
$$z = 60x_1 + 35x_2 + 20x_3$$

s.t. $8x_1 + 6x_2 + x_3 \le 48$
 $4x_1 + 2x_2 + 1.5x_3 \le 20$
 $2x_1 + 1.5x_2 + 0.5x_3 \le 8$
 $x_2 \le 5$
 $x_1, x_2, x_3 \ge 0$

Convert the standard form:

max
$$z = 60x_1 + 35x_2 + 20x_3$$

s.t. $8x_1 + 6x_2 + x_3 + s_1 = 48$
 $4x_1 + 2x_2 + 1.5x_3 + s_2 = 20$
 $2x_1 + 1.5x_2 + 0.5x_3 + s_3 = 8$
 $x_2 + s_4 = 5$
 $x_1, x_2, x_3, s_1, s_2, s_3, s_4 \ge 0$

Use the Tabular Form:

variable	x_1	<i>x</i> ₂	<i>x</i> ₃	<i>S</i> ₁	<i>s</i> ₂	<i>S</i> ₃	S_4	RHS	Ratio
Ζ.	-60	-35	-20	0	0	0	0	0	
<i>S</i> ₁	8	6	1	1	0	0	0	48	48/8=6
<i>s</i> ₂	4	2	1.5	0	1	0	0	20	20/4=5
<i>S</i> ₃	2	1.5	0.5	0	0	1	0	8	4/2=4
<i>S</i> ₄	0	1	0	0	0	0	1	5	*

Since $\min\{-60, -35, -20\} = -60$, then x_1 enter the basic variable.

variable	x_1	<i>x</i> ₂	<i>x</i> ₃	S_1	<i>s</i> ₂	<i>s</i> ₃	S_4	RHS	Ratio
Z.	0	10	-5	0	0	30	0	240	
<i>S</i> ₁	0	0	-1	1	0	-4	0	16	*
<i>s</i> ₂	0	-1	0.5	0	1	-2	0	4	4/0.5=8
x_1	1	0.75	0.25	0	0	0.5	0	4	4/0.25=16
<i>S</i> ₄	0	1	0	0	0	0	1	5	*

Since $\min\{-5\} = -5$, then x_3 enter the basic variable.

variable	x_1	<i>x</i> ₂	<i>x</i> ₃	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	S_4	RHS	Ratio
Ζ.	0	0	0	0	10	10	0	280	
<i>S</i> ₁	0	-2	0	1	2	-8	0	24	
<i>x</i> ₃	0	-2	1	0	2	-4	0	8	
x_1	1	1.25	0	0	-0.5	1.5	0	2	
<i>S</i> ₄	0	1	0	0	0	0	1	5	

If x_2 enter the basic variable and x_1 leave the basic variable, then

<i>x</i> ₁	x_2	x_3	S_1	<i>s</i> ₂	<i>s</i> ₃	S_4	RHS	Ratio
0	0	0	0	10	10	0	280	
1.6	0	0	1	1.2	-5.6	0	27.2	
1.6	0	1	0	1.2	-1.6	0	11.2	
0.8	1	0	0	-0.4	1.2	0	1.6	
-0.8	0	0	0	0.4	-1.2	1	3.4	
	0 1.6 1.6 0.8	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						

Hence, $x_1 = 2, x_2 = 0, x_3 = 8, x_4 = 0, z = 280$, or $x_1 = 0, x_2 = 1.6, x_3 = 11.2, x_4 = 0, z = 280$.

Example: (Unbounded LPs)

max s.t. $z = 36x_1 + 30x_2 - 3x_3 - 4x_4$ $x_1 + x_2 - x_3 \le 5$ $6x_1 + 5x_2 - x_4 \le 10$ $x_1, x_2, x_3, x_4 \ge 0$

Convert the standard form:

max $z - 36x_1 - 30x_2 + 3x_3 + 4x_4 = 0$ s.t. $x_1 + x_2 - x_3 + s_1 = 5$ $6x_1 + 5x_2 - x_4 + s_2 = 10$ $x_1, x_2, x_3, x_4, s_1, s_2 \ge 0$

Table Form

variable	x_1	<i>x</i> ₂	<i>x</i> ₃	x_4	S_1	<i>s</i> ₂	RHS	Ratio
Z.	-36	-30	3	4	0	0	0	
<i>S</i> ₁	1	1	-1	0	1	0	5	5/1=5
<i>s</i> ₂	6	5	0	-1	0	1	10	10/6

Since $\min\{-36, -30\} = -36$, then x_1 enter the basic variable.

variable	x_1	x_2	x_3	x_4	S_1	S_2		RHS	S Ra	tio
Z.	0	0	3	-2	0	6		60		
<i>s</i> ₁	0	1/6	-1	1/6	1	- ;	1/6	10/3	10/3	$1/\frac{1}{6} = 20$
x_1	1	5/6	0	$-\frac{1}{6}$	0	$\frac{1}{6}$		5/3	*	
Since mi	n{-2} =	= -2, the	en x_4	enter the	e basic	variable	.		,	
Since mi	n{20,*	= 20, t	hen s_1	leave t	he basi	c variab	le.			
variable	x_1	x_2	2	<i>x</i> ₃	x_4	<i>s</i> ₁	<i>s</i> ₂		RHS	Ratio
Z.	0	1/3	,	-9	0	12	4		100	
<i>x</i> ₄	0	1		-6	1	6	-1		20	
x_1	1	1		-1	0	1	0		5	

We can find points in the feasible region having arbitrarily large z-values.

Definition of Degeneracy

An LP is **degenerate**(退化) if it has at least one bfs in which a basic variable is equal to zero.

	zero.					
Example:	max	$z = 5x_1 + 2x_2$				
	s.t.	$x_1 + x_2 \le 6$				
		$x_1 - x_2 \le 0$				
		$x_1, x_2 \ge 0$				
Convert th	e standa	rd form:				
	max	$z - 5x_1 - 2x_2 =$	0			
	s.t.	$x_1 + x_2 + s_1 = 6$				
		$x_1 - x_2 + s_2 = 0$				
		$x_1, x_2, s_1, s_2 \ge 0$				
variable	x_1	<i>x</i> ₂	<i>S</i> ₁	<i>s</i> ₂	RHS	Ratio
Z	-5	-2	0	0	0	
<i>s</i> ₁	1	1	1	0	6	6/1=6
<i>s</i> ₂	1	-1	0	1	0	0/1=0
Since min	$n\{-5,-2\}$	$x = -5$, then x_1	enter the b	asic variab	le.	
Since min	$n\{6,0\} =$	0, then s_2 leav	e the basic	variable.		
Since min variable	$n\{6,0\} = \frac{x_1}{x_1}$	$\frac{0, \text{ then } s_2 \text{ leav}}{x_2}$	the basic $\frac{s_1}{s_1}$	s_2 variable.	RHS	Ratio
					RHS 0	Ratio
variable	<i>x</i> ₁	<u>x</u> ₂	<u><i>s</i></u> ₁	<i>S</i> ₂		Ratio 6/2=3
variable z	$\frac{x_1}{0}$	$\frac{x_2}{-7}$	$\frac{s_1}{0}$	$\frac{s_2}{5}$	0	
$\frac{variable}{z}$ $\frac{z}{s_1}$ x_1	$\frac{x_1}{0}$	$\frac{x_2}{-7}$	$ \frac{s_1}{0} $ 1 0	$ \frac{s_2}{5} \\ -1 \\ 1 $	0 6	6/2=3
$\frac{variable}{z}$ $\frac{z}{s_1}$ x_1 Since min	$\frac{x_1}{0}$ $\frac{0}{0}$ 1 $1 = -7 = -7$	$ \frac{x_2}{-7} \\ $	$\frac{\frac{s_1}{0}}{\frac{0}{1}}$	$\frac{\frac{s_2}{5}}{\frac{-1}{1}}$ c variable.	0 6	6/2=3
$\frac{variable}{z}$ $\frac{z}{s_1}$ x_1 Since min	$\frac{x_1}{0}$ $\frac{0}{0}$ 1 $1 = -7 = -7$	$ \frac{x_2}{-7} $ $ \frac{-7}{2} $ $ -1 $ $ -7, \text{ then } x_2 \text{ ent} $	$\frac{\frac{s_1}{0}}{\frac{0}{1}}$	$\frac{\frac{s_2}{5}}{\frac{-1}{1}}$ c variable.	0 6	6/2=3
$\frac{variable}{z}$ $\frac{z}{s_1}$ x_1 Since min	$\frac{x_{1}}{0}$ $\frac{0}{0}$ $\frac{1}{0}$ 1 $1{3,*} = 1$	$ \frac{x_2}{-7} $ $ -7 $ $ -7 $ $ -7 $ $ -7 $ $ -1 $ $ -7 $, then x_2 ent $ 3 $, then s_1 leave	$\frac{s_1}{0}$ $\frac{0}{1}$ $\frac{0}{0}$ er the basic	$ \frac{s_2}{5} \\ -1 \\ 1 \\ c variable. \\ variable. $	0 6 0	6/2=3 *
variable z s_1 x_1 Since minSince minvariable	$\frac{x_{1}}{0}$ $\frac{0}{0}$ $\frac{1}{1}$ $1(-7) = -1$ $1(3,*) = \frac{1}{2}$ $\frac{x_{1}}{1}$	$ \frac{x_2}{-7} $ $ -7 $ $ 2 $ $ -1 $ $ -7, \text{ then } x_2 \text{ ent} $ $ 3, \text{ then } s_1 \text{ leave} $ $ x_2 $	$\frac{s_1}{0}$ $\frac{0}{1}$ $\frac{1}{1}$ $$	$ \frac{s_2}{5} \\ -1 \\ 1 \\ c variable. \\ variable. \\ \frac{s_2}{5} \\ s_$	0 6 0 RHS	6/2=3 *

Termination is not guaranteed foe degenerate problems. Consider the linear program

 $\max \qquad z = -\frac{3}{4}x_1 + 150x_2 - \frac{1}{50}x_3 + 6x_4$ s.t. $\frac{1}{4}x_1 - 60x_2 - \frac{1}{25}x_3 + 9x_4 \le 0$ $\frac{1}{2}x_1 - 90x_2 - \frac{1}{50}x_3 + 3x_4 \le 0$ $x_3 \qquad \le 1$ $x_1, x_2, x_3, x_4 \ge 0$

We will apply the simplex method to this problem, using the most negative reduced cost to select the entering variable, and breaking ties in the ratio test by selecting the first candidate row. If this is done, then the simplex method cycles—endlessly repeating the same sequence of bases with no improvement in the objective and without finding the optimal solution.

• 11		~						
variable	$\frac{x_1}{3}$	$\frac{x_2}{150}$	$\frac{x_3}{1}$	$\frac{x_4}{c}$	$\frac{s_1}{0}$	$\frac{s_2}{0}$	$\frac{s_3}{0}$	$\frac{RHS}{O}$
$\frac{-z}{z}$	$\frac{-\frac{3}{4}}{\frac{1}{4}}$	$\frac{150}{60}$	$\frac{-\frac{1}{50}}{1}$	6	$\frac{0}{1}$	$-\frac{0}{0}$	$-\frac{0}{0}$	0
<i>s</i> ₁		-60	$-\frac{1}{25}$	9	1	0	0	0
<i>s</i> ₂	$\frac{1}{2}$	-90	$-\frac{1}{50}$	3	0	1	0	0
<i>s</i> ₃	0	0	1	0	0	0	1	1
variable	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	RHS
- <i>z</i> ,	$\frac{1}{0}$	$-\frac{2}{-30}$	$-\frac{7}{50}$	$\frac{4}{33}$	$-\frac{1}{3}$	$-\frac{2}{0}$	$-\frac{3}{0}$	0
$\overline{x_1}$	1	-240	$-\frac{4}{25}$	36	4	0	0	0
<i>s</i> ₂	0	30	$\frac{3}{50}$	-15	-2	1	0	0
<i>S</i> ₃	0	0	1	0	0	0	1	1
vomable		<u> </u>						
variable	$-\frac{x_1}{0}$	$\frac{x_2}{0}$	$\frac{x_3}{2}$	$\frac{x_4}{18}$	$\frac{s_1}{1}$	$\frac{s_2}{1}$	$\frac{s_3}{0}$	$\frac{\text{RHS}}{0}$
$\frac{-z}{r}$	$\frac{0}{1}$	$-\frac{0}{0}$	$\frac{-\frac{2}{25}}{\frac{8}{25}}$	<u>- 18</u> -84	$-\frac{1}{-12}$	$-\frac{1}{8}$	$-\frac{0}{0}$	<u>-</u> <u>0</u> 0
<i>x</i> ₁	0	1	$\frac{1}{500}$	$-\frac{1}{2}$	$-\frac{1}{15}$	$\frac{1}{30}$	0	0
<i>x</i> ₂ <i>s</i> ₃	0	0	500 1	2 0	15 0	30 0	1	1
53	0	0	1	0	0	0	1	1
variable	x_1	<i>x</i> ₂	<i>x</i> ₃	<i>X</i> ₄	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	RHS
- <i>z</i>	$\frac{1}{4}$	0	0	-3	-2	3	0	0
<i>x</i> ₃	$\frac{25}{8}$	0	1	$-\frac{525}{2}$	$-\frac{75}{2}$	25	0	0
<i>x</i> ₂	$-\frac{1}{160}$	1	0	$\frac{1}{40}$	$\frac{1}{120}$	$-\frac{1}{60}$	0	0
<i>S</i> ₃	$-\frac{25}{8}$	0	1	<u>525</u> 2	$\frac{75}{2}$	-25	1	1
variable	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<u> </u>	s ₂	<u> </u>	RHS
-z	$-\frac{1}{2}$	$-\frac{12}{120}$	$\frac{1}{0}$	$-\frac{n_4}{0}$	<u>-1</u>	$\frac{-\frac{-2}{2}}{1}$	$-\frac{-3}{0}$	$\frac{100}{0}$
$\frac{1}{x_3}$	$\frac{2}{-\frac{125}{2}}$	$\frac{120}{10500}$	- 1	$-\frac{0}{0}$	$-\frac{1}{50}$	-150	$-\frac{0}{0}$	
x_4	$-\frac{1}{4}$	40	0	1	$\frac{1}{3}$	$-\frac{2}{3}$	0	0
<i>S</i> ₃	$\frac{125}{2}$	-10500	0	0	-50	150	1	1
_	_		_	_	_	_	_	_
variable	x_1	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	RHS
-z	$-\frac{7}{4}$	330	$\frac{1}{50}$	0	0	-2	0	0
<i>x</i> ₅	$-\frac{5}{4}$	210	$\frac{1}{50}$	0	1	-3	0	0
X_4	$\frac{1}{6}$	-30	$-\frac{1}{150}$	1	0	$\frac{1}{3}$	0	0
<i>s</i> ₃	0	0	1	0	0	0	1	1

variable	x_1	<i>x</i> ₂	<i>x</i> ₃	X_4	<i>S</i> ₁	s ₂	<i>s</i> ₃	RHS
-z	$-\frac{3}{4}$	150	$-\frac{1}{50}$	6	0	0	0	0
<i>S</i> ₁	$\frac{1}{4}$	-60	$-\frac{1}{25}$	9	1	0	0	0
<i>s</i> ₂	$\frac{1}{2}$	-90	$-\frac{1}{50}$	3	0	1	0	0
<i>s</i> ₃	0	0	1	0	0	0	1	1

The final basis is the same as the initial basis, so that the simplex method has made no progress and will continue to cycle through these six bases indefinitely.

A variety of techniques have been developed that guarantee termination of the simplex method even on degenerate problems. One of these, discovered by Bland and often referred to as "**Bland's rule**," is described here.

variable	x_1	<i>x</i> ₂	<i>x</i> ₃	x_4	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	RHS
-z	$-\frac{1}{2}$	120	0	0	-1	1	0	0
<i>x</i> ₃	$-\frac{125}{2}$	10500	1	0	50	-150	0	0
X_4	$-\frac{1}{4}$	40	0	1	$\frac{1}{3}$	$-\frac{2}{3}$	0	0
<i>S</i> ₃	$\frac{125}{2}$	-10500	0	0	-50	150	1	1
		_	_	_	_		_	
variable	x_1	<i>x</i> ₂	<i>x</i> ₃	x_4	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	RHS
-z	0	36	0	0	$-\frac{7}{5}$	$\frac{11}{5}$	$\frac{1}{125}$	$\frac{1}{125}$
<i>x</i> ₃	0	0	1	0	0	0	1	1
X_4	0	-2	0	1	$\frac{2}{15}$	$-\frac{1}{15}$	$\frac{1}{250}$	$\frac{1}{250}$
<i>x</i> ₁	1	-168	0	0	$-\frac{4}{5}$	$\frac{12}{5}$	$\frac{2}{125}$	$\frac{2}{125}$
variable	x_1	<i>x</i> ₂	<i>x</i> ₃	x_4	<i>S</i> ₁	<i>s</i> ₂	<i>s</i> ₃	RHS
- <i>z</i> .	0	15	0	$\frac{21}{2}$	0	$\frac{3}{2}$	$\frac{1}{20}$	$\frac{1}{20}$
<i>x</i> ₃	0	0	1	0	0	0	1	1
<i>S</i> ₁	0	-15	0	$\frac{15}{2}$	1	$-\frac{1}{2}$	$\frac{3}{100}$	$\frac{3}{100}$
<i>x</i> ₁	1	-180	0	6	0	2	$\frac{2}{50}$	$\frac{2}{50}$

Note: Bland's rule can be inefficient if applied at every simplex iteration since it may select entering variables that do not greatly improve the value of the objective function.

(Reference: Robert G. Bland, New finite pivoting rules for the simplex method, Mathematics of Operations Research 2 (1997) pp. 103-107)

The Big M Method

Recall that the simplex algorithm requires a stating bfs. In all the problems we have solved so far, we found a starting bfs by using the slack variables as our basic variables. If an LP has any \geq or equality constraints, however, a starting bfs may not readily apparent. When a bfs is not readily apparent, the Big M method (or the two-phase simplex) may be used to solve the problem. The Big M method first find a bfs by adding "artificial" variables to the problem. The objective function of

the original LP must, of course, be modified to ensure that the artificial variables are all equal to 0 at the conclusion of the simplex algorithm.

Example: Bevco

Bevco manufactures an orange-flavored soft drink called Oranj by combining orange soda and orange juice. Each ounce of orange soda contains 0.5 oz of sugar and 1 mg of vitamin C. Each ounce of orange juice contains 0.25 oz of sugar and 3 mg of vitamin C. It costs Bevco 2 ¢ to produce an ounce of orange soda and 3 ¢ to produce an ounce of orange juice. Bevco's marketing department has decided that each 10-oz bottle of Oranj must contain at least 20 mg of vitamin C and at most 4 oz of sugar. Use linear programming to determine how Bevco can meet the marketing department's requirements at minimum cost.

Solution: Let

 x_1 = number of ounces of orange soda in a bottle of Oranj

 x_2 = number of ounces of orange juice in a bottle of Oranj

Then the appropriate LP is

min
$$z = 2x_1 + 3x_2$$

s.t. $\frac{1}{2}x_1 + \frac{1}{4}x_2 \le 4$
 $x_1 + 3x_2 \ge 20$
 $x_1 + x_2 = 10$
 $x_1, x_2 \ge 0$

Convert the standard form:

max
$$-z = -2x_1 - 3x_2 - Ma_2 - Ma_3$$

s.t. $\frac{1}{2}x_1 + \frac{1}{4}x_2 + s_1 = 4$
 $x_1 + 3x_2 - e_2 + a_2 = 20$
 $x_1 + x_2 + a_3 = 10$
 $x_1, x_2, s_1, e_2, a_2, a_3 \ge 0$

Tabular Form:

	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	e_2		a_2	a_3		RHS	Ratio
-z	2	3	0	0		М	M		0	
<i>S</i> ₁	1/2	1/4	1	0		0	0		4	
a_2	1	3	0	-1		1	0		20	
a_3	1	1	0	0		0	1		10	
The in	nitial table is									
	x_1		<i>x</i> ₂		<i>S</i> ₁	e_2	a_2	<i>a</i> ₃	RHS	Ratio
- <i>z</i> .	-2M + 2		-4M + 3		0	М	0	0	30 <i>M</i>	
<i>s</i> ₁	$\frac{1}{2}$		1/4		1	0	0	0	4	16
a_2	1		3		0	-1	1	0	20	20/3
a_3	1		1		0	0	0	1	10	10

Since $\min\{-2M+2, -4M+3\} = -4M+3$, then x_2 enter the basic variable.

Since $\min\{16, \frac{20}{3}, 10\} = \frac{20}{3}$, then a_2 leave the basic variable.

	<i>x</i> ₁	<i>x</i> ₂	S ₁	e_2	a_2	a_3	RHS	Ratio
-z	$-2M+3/_{3}$	0	0	$-M + 3/_{3}$	4M - 3/3	0	10M + 60/3	
<i>s</i> ₁	5/12	0	1	1/12	$-\frac{1}{12}$	0	7/3	28/5
x_2	1/3	1	0	$-\frac{1}{3}$	$\frac{1}{3}$	0	20/3	20
a_3	2/3	0	0	$\frac{1}{3}$	$-\frac{1}{3}$	1	$\frac{10}{3}$	5
. .								

Since $\min\{-2M+3/3, -M+3/3\} = -2M+3/3$, then x_1 enter the basic variable.

Since $\min\{\frac{28}{5}, 20, 5\} = 5$, then a_3 leave the basic variable.

	x_1	x_2	S_1	e_2	a_2	a_3	RHS	Ratio
-z	0	0	0	$\frac{1}{2}$	$2M - \frac{1}{2}$	2M - 3/2	25	
<i>S</i> ₁	0	0	1	$-\frac{1}{8}$	$-\frac{1}{8}$	$-\frac{5}{8}$	1/4	
x_2	0	1	0	$-\frac{1}{2}$	$\frac{1}{2}$	$-\frac{1}{2}$	5	
x_1	1	0	0	$\frac{1}{2}$	$-\frac{1}{2}$	$\frac{3}{2}$	5	

Hence, $x_1 = 5, x_2 = 5, z = 25$

The Two-Phase Simplex Method

Case 1:

Example:

min	$z = 2x_1 + 3x_2$
s.t.	$\frac{1}{2}x_1 + \frac{1}{4}x_2 \le 4$
	$x_1 + 3x_2 \ge 36$
	$x_1 + x_2 = 10$
	$x_1, x_2 \ge 0$

Phase I problem:

min	$w = a_2 + a_3$
s.t.	$\frac{1}{2}x_1 + \frac{1}{4}x_2 + s_1 = 4$
	$x_1 + 3x_2 - e_2 + a_2 = 36$
	$x_1 + x_2 + a_3 = 10$
	$x_1, x_2, s_1, e_2, a_2, a_3 \ge 0$

		1' 2' 1' 2	/ 2/ 3					
	x_1	<i>x</i> ₂	<i>S</i> ₁	e_2	a_2	a_3	RHS	Ratio
-w	0	0	0	0	1	1	0	
<i>S</i> ₁	1/2	1/4	1	0	0	0	4	
a_2	1	3	0	-1	1	0	36	
a_3	1	1	0	0	0	1	10	
The ini	tial table is							
	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	e_2	a_2	a_3	RHS	Ratio
-w	-2	-4	0	1	0	0	-46	
<i>s</i> ₁	1/2	1/4	1	0	0	0	4	16
a_2	1	3	0	-1	1	0	36	12
a_3	1	1	0	0	0	1	10	10

Since	$\min\{-2, -4\} = -4$, then x_2 enter the basic variable.
Since	$\min\{16, 12, 10\} = 10$, then a_3 leave the basic variable.

	<i>x</i> ₁	<i>x</i> ₂	S ₁	<i>e</i> ₂	<i>a</i> ₂	<i>a</i> ₃	RHS	Ratio
-w	2	0	0	1	0	4	-6	
<i>S</i> ₁	1/4	0	1	0	0	$-\frac{1}{4}$	$\frac{3}{2}$	
a_2	-2	0	0	-1	1	-3	6	
<i>x</i> ₂	1	1	0	0	0	1	10	

Since $w \neq 0$, then the origin LP must have no feasible solution.

Case II:

min
$$z = 2x_1 + 3x_2$$

s.t. $\frac{1}{2}x_1 + \frac{1}{4}x_2 \le 4$
 $x_1 + 3x_2 \ge 20$
 $x_1 + x_2 = 10$
 $x_1, x_2 \ge 0$

Phase I problem:

min
$$w = a_2 + a_3$$

s.t. $\frac{1}{2}x_1 + \frac{1}{4}x_2 + s_1 = 4$
 $x_1 + 3x_2 - e_2 + a_2 = 20$
 $x_1 + x_2 + a_3 = 10$

	x_1, x_2	$k_2, s_1, e_2, a_2, a_2, a_2, a_3$	$a_3 \ge 0$					
	<i>x</i> ₁	x_2	<i>S</i> ₁	e_2	a_2	a_3	RHS	Ratio
-w	0	0	0	0	1	1	0	
<i>s</i> ₁	1/2	1/4	1	0	0	0	4	
a_2	1	3	0	-1	1	0	20	
<i>a</i> ₃	1	1	0	0	0	1	10	
The ini	tial table is	;						
	x_1	<i>x</i> ₂	<i>S</i> ₁	e_2	a_2	a_3	RHS	Ratio
-w	-2	-4	0	1	0	0	-30	
<i>s</i> ₁	1/2	1/4	1	0	0	0	4	16
a_2	1	3	0	-1	1	0	20	20/3
a_3	1	1	0	0	0	1	10	10

Since $\min\{-2, -4\} = -4$, then x_2 enter the basic variable.

Since	3	,10) - 3	u_2 reave		unuone			
	x_1	<i>x</i> ₂	S ₁	e_2	a_2	a_3	RHS	Ratio
-w	- 2/3	0	0	$-\frac{1}{3}$	4/3	0	10/3	
<i>s</i> ₁	5/12	0	1	1/12	$-\frac{1}{12}$	0	7/3	28/5
<i>x</i> ₂	$\frac{1}{3}$	1	0	$-\frac{1}{3}$	$\frac{1}{3}$	0	20/3	20
a_3	2/3	0	0	$\frac{1}{3}$	$-\frac{1}{3}$	1	$\frac{10}{3}$	5

Since $\min\{16, \frac{20}{3}, 10\} = \frac{20}{3} a_2$ leave the basic variable

Since $\min\{-\frac{2}{3}, -\frac{1}{3}\} = -\frac{2}{3}$, then x_1 enter the basic variable. Since $\min\{\frac{28}{5}, 20, 5\} = 5$, then a_3 leave the basic variable. a_2 a_3 RHS Ratio x_1 x_2 S_1 e_2 -w0 0 0 1 1 0 0 $-\frac{1}{8}$ $-\frac{5}{8}$ $\frac{1}{8}$ $\frac{1}{4}$ 0 0 1 S_1 $-\frac{1}{2}$ $\frac{1}{2}$ $-\frac{1}{2}$ 0 1 0 5 x_2 $\frac{1}{2}$ $-\frac{1}{2}$ $\frac{3}{2}$ 5 1 0 0 x_1 Phase II: min $z = 2x_1 + 3x_2$ s.t. $s_1 - \frac{1}{8}e_2 = \frac{1}{4}$ $x_2 - \frac{1}{2}e_2 = 5$ $x_1 + \frac{1}{2}e_2 = 5$ $x_1, x_2, s_1, e_2 \ge 0$ RHS Ratio x_1 x_2 S_1 e_2 2 3 0 0 0 -z $-\frac{1}{8}$ 1 $\frac{1}{4}$ 0 0 S_1 0 1 0 $-\frac{1}{2}$ 5 x_2 $\frac{1}{2}$ 5 1 0 0 x_1 The initial table is RHS Ratio x_2 S_1 e_2 x_1 1/2 0 0 -z0 -25 $-\frac{1}{8}$ $\frac{1}{4}$ 0 0 1 S_1 $-\frac{1}{2}$ 5 0 1 0 x_2 $\frac{1}{2}$ 5 0 0 x_1 1

Hence, $x_1 = x_2 = 5, z = 25$

Case III:

max
$$z = 40x_1 + 10x_2 + 7x_5 + 14x_6$$

s.t. $x_1 - x_2 + 2x_5 = 0$
 $-2x_1 + x_2 - 2x_5 = 0$
 $x_1 + x_3 + x_5 - x_6 = 3$
 $2x_2 + x_3 + x_4 + 2x_5 + x_6 = 4$
 $x_i \ge 0 (i = 1, 2, 3, 4, 5, 6)$

18

Convert the standard form:

max
$$z = 40x_1 + 10x_2 + 7x_5 + 14x_6$$

s.t. $x_1 - x_2 + 2x_5 + a_1 = 0$
 $-2x_1 + x_2 - 2x_5 + a_2 = 0$
 $x_1 + x_3 + x_5 - x_6 + a_3 = 3$
 $2x_2 + x_3 + x_4 + 2x_5 + x_6 = 4$
 $x_i \ge 0(i = 1, 2, 3, 4, 5, 6), a_i \ge 0(i = 1, 2, 3)$

Phase I:

min
$$w = a_1 + a_2 + a_3$$

s.t. $x_1 - x_2 + 2x_5 + a_1 = 0$
 $-2x_1 + x_2 - 2x_5 + a_2 = 0$
 $x_1 + x_3 + x_5 - x_6 + a_3 = 3$
 $2x_2 + x_3 + x_4 + 2x_5 + x_6 = 4$
 $x_i \ge 0$ (*i* = 1, 2, 3, 4, 5, 6), $a_i \ge 0$ (*i* = 1, 2, 3)

Table Form

	x_1	x_2	<i>x</i> ₃	x_4	<i>x</i> ₅	<i>x</i> ₆	a_1	a_2	a_3	RHS	Ratio
-w	0	0	0	0	0	0	1	1	1	0	
a_1	1	-1	0	0	2	0	1	0	0	0	
a_2	-2	1	0	0	-2	0	0	1	0	0	
a_3	1	0	1	0	1	-1	0	0	1	3	
X_4	0	2	1	1	2	1	0	0	0	4	

The initial table is

	x_1	<i>x</i> ₂	<i>x</i> ₃	x_4	<i>x</i> ₅	<i>x</i> ₆	a_1	a_2	a_3	RHS	Ratio
-w	0	0	-1	0	-1	1	0	0	0	-3	
a_1	1	-1	0	0	2	0	1	0	0	0	*
a_2	-2	1	0	0	-2	0	0	1	0	0	*
a_3	1	0	1	0	1	-1	0	0	1	3	3
X_4	0	2	1	1	2	1	0	0	0	4	4

Since $\min\{-1, -1\} = -1$. Then x_3 enter the basic variable.

Since	$\min\{*, *, 3, 4\} = 3$, then	a_3	leave the basic variable.

	x_1	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆	a_1	a_2	a_3	RHS	Ratio
-w	1	0	0	0	0	0	0	0	1	0	
a_1	1	-1	0	0	2	0	1	0	0	0	
a_2	-2	1	0	0	-2	0	0	1	0	0	
<i>x</i> ₃	1	0	1	0	1	-1	0	0	1	3	
X_4	-1	2	0	1	1	2	0	0	-1	1	

Phase II:

max
$$z = 10x_2 + 7x_5 + 14x_6$$

s.t. $-x_2 + 2x_5 + a_1 = 0$
 $x_2 - 2x_5 + a_2 = 0$
 $x_3 + x_5 - x_6 = 3$
 $2x_2 + x_4 + x_5 + 2x_6 = 1$
 $x_i \ge 0 (i = 2, 3, 4, 5, 6), a_i \ge 0 (i = 1, 2)$

Table Form

_	x_2	<i>x</i> ₃	X_4	<i>x</i> ₅	x_6	a_1	a_2	RHS	Ratio
Z.	-10	0	0	-7	-14	0	0	0	
a_1	-1	0	0	2	0	1	0	0	*
a_2	1	0	0	-2	0	0	1	0	*
<i>x</i> ₃	0	1	0	1	-1	0	0	3	*
x_4	2	0	1	1	2	0	0	1	0.5

Since $\min\{-10, -7, -14\} = -14$, then x_6 enter the basic variable.

Since	$\min\{*, *, *, 0.5\}$	= 0.5, then	X_4	leave the basic variable.
-------	------------------------	-------------	-------	---------------------------

	<i>x</i> ₂	<i>x</i> ₃	x_4	<i>x</i> ₅	<i>x</i> ₆	a_1	a_2	RHS	Ratio
Z.	4	0	7	0	0	0	0	7	
a_1	0	0	0	2	0	1	0	0	
a_2	1	0	0	0	0	0	1	0	
<i>x</i> ₃	1	1	0.5	1.5	0	0	0	3.5	
x_6	1	0	0.5	0.5	1	0	0	0.5	

Hence, $x_3 = 3.5, x_6 = 0.5, z = 7$.

Unrestricted-in-Sign Variables

$$\max \quad z = 30x_1 - 4x_2$$

s.t.
$$5x_1 - x_2 \le 30$$
$$x_1 \le 5$$
$$x_1 \ge 0, x_2 \text{ urs}$$

Convert to

max
$$z = 30x_1 - 4x'_2 + 4x''_2$$

s.t. $5x_1 - x'_2 + x''_2 \le 30$
 $x_1 \le 5$
 $x_1, x'_2, x''_2 \ge 0$

Convert to the standard form:

 $\max \quad z - 30x_1 + 4x_2' - 4x_2'' = 0$ s.t. $5x_1 - x_2' + x_2'' + s_1 = 30$ $x_1 + s_2 = 5$ $x_1, x_2', x_2'', s_1, s_2 \ge 0$ Table Form

	X_1	x'_2	x_2''	S_1	<i>s</i> ₂	RHS	Ratio
Z.	-30	4	-4	0	0	0	
<i>S</i> ₁	5	-1	1	1	0	30	6
<i>s</i> ₂	1	0	0	0	1	5	5
Since	min{-30,	$4\} = -30$, the	in x_1 enter	r the basic va	ariable.		
Since	$\min\{6,5\} =$	5, then s_2 l	eave the ba	asic variable			
	<i>x</i> ₁	<i>x</i> ₂ '	<i>x</i> ₂ "	<i>S</i> ₁	S ₂	RHS	Ratio
Z.	0	4	-4	0	30	150	
<i>S</i> ₁	0	-1	1	1	-5	5	5
x_1	1	0	0	0	1	5	*
Since	$\min\{-4\} = -$	-4, then x_2''	enter the b	asic variable	2.		
Since	$\min\{5, *\} =$	5, then s_1 l	eave the ba	sic variable.			
	x_1	x'_2	x_2''	s ₁	s ₂	RHS	Ratio
z	0	0	0	4	10	170	
x_2''	0	-1	1	1	-5	5	
λ_2							

Hence, $x_1 = 5, x_2 = x'_2 - x''_2 = 0 - 5 = -5, z = 170$.

The Revised Simplex Method(修正單形法)

Assume that we are solving a max problem that has been prepared for solution by the Big-M method and that at this point, the LP has m constraints and n variables. Although some of these variables may be slack, surplus, or artificial, we choose to label them x_1, x_2, \dots, x_n . Then the LP may be written

max s.t.

$z = c_1$	$x_1 + c_2 x_2$	$+\cdots+c_n x_n$	
$a_{11}x_1$ -	$+a_{12}x_2 +$	$\cdots + a_{1n} x_n =$	$= b_1$
$a_{21}x_{1}$ -	$+a_{22}x_2 +$	$\cdots + a_{2n}x_n$	$=b_2$
:	÷	:	
$a_{m1}x_1$	$+a_{m2}x_{2}$ -	$+\cdots+a_{mn}x_n$	$=b_m$
$x_i \ge 0$	(i = 1, 2, -)	$\cdots, n)$	

Matrix Form:

max	$z = C^T X$
s.t.	AX = b
	$X \ge 0$

We can be written as

max	$z = C_B^T X_B + C_N^T X_N$
s.t.	$BX_B + NX_N = b$
	$X_B, X_N \ge 0$

where

 C_{R}^{T} is the $1 \times m$ row vector whose elements are the coefficients of the basic variables.

 C_N^T is the $1 \times (n-m)$ row vector whose elements are the coefficients of the nonbasic

variables.

The $m \times m$ matrix B is the matrix whose *j*th column is the column for basic variables.

N is the $m \times (n-m)$ matrix whose columns are the columns for the nonbasic variables.

 X_{B} is the $m \times 1$ vector listing the basic variables.

 X_N is the $(n-m) \times 1$ vector listing the nonbasic variables.

Example: Consider the max LP

 $\begin{array}{ll} \max & z = 60x_1 + 30x_2 + 20x_3 + 0s_1 + 0s_2 + 0s_3 \\ \text{s.t.} & 8x_1 + 6x_2 + x_3 + s_1 & = 48 \\ & 4x_1 + 2x_2 + 1.5x_3 & + s_2 & = 20 \\ & 2x_1 + 1.5x_2 + 0.5x_3 & + s_3 = 8 \\ & x_1, x_2, x_3, s_1, s_2, s_3 \ge 0 \end{array}$

Suppose that
$$X_B = \begin{bmatrix} s_1 \\ x_3 \\ x_1 \end{bmatrix}$$
, then

max
$$z = C_B^T X_B + C_N^T X_N = \begin{bmatrix} 0 & 20 & 60 \end{bmatrix} \begin{bmatrix} s_1 \\ x_3 \\ x_1 \end{bmatrix} + \begin{bmatrix} 30 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_2 \\ s_2 \\ s_3 \end{bmatrix}$$

s.t.
$$BX_{B} + NX_{N} = b \equiv \begin{bmatrix} 1 & 1 & 8 \\ 0 & 1.5 & 4 \\ 0 & 0.5 & 2 \end{bmatrix} \begin{bmatrix} s_{1} \\ s_{3} \\ s_{1} \end{bmatrix} + \begin{bmatrix} 6 & 0 & 0 \\ 2 & 1 & 0 \\ 1.5 & 0 & 1 \end{bmatrix} \begin{bmatrix} s_{2} \\ s_{2} \\ s_{3} \end{bmatrix} = \begin{bmatrix} 48 \\ 20 \\ 8 \end{bmatrix}$$

$$X_B, X_N \ge 0 \equiv x_1, x_2, x_3, s_1, s_2, s_3 \ge 0$$

Assume that the LP problem is

max s.t.

$$BX_{B} + NX_{N} = b$$
$$X_{B}, X_{N} \ge 0$$

 $z = C_{R}^{T} X_{R} + C_{N}^{T} X_{N}$

Then, the current tableau is

	$X_{\scriptscriptstyle B}$	$X_{_N}$	RHS			$X_{\scriptscriptstyle B}$	$X_{_N}$	RHS
Z.	$-C_B^T$	$-C_N^T$	0	\Rightarrow	Z.	0	$C_B^T B^{-1} N - C_N^T$	$C_B^T B^{-1} b$
X _B	В	N	b		X_{B}	Ι	$B^{-1}N$	$B^{-1}b$

Algorithm of the revised simplex method:

1. Compute $\overline{C}_N = C_B^T B^{-1} N - C_N^T = [\overline{c}_j]$. If $\overline{c}_j \ge 0$, $\forall j$, then the LP problem is optimal, stop;

otherwise, choose q such that $\overline{c}_q = \min\{\overline{c}_j \mid \overline{c}_j < 0\}$, then x_q should enter the basic variable.

2. Compute $\overline{a}_q = B^{-1}a_q$ and $\overline{b} = B^{-1}b$. Choose p such that $\frac{\overline{b}_p}{\overline{a}_{pq}} = \min\left\{\frac{\overline{b}_i}{\overline{a}_{iq}} \mid \overline{a}_{iq} > 0\right\}$, then x_p

should leave the basic variable.

3. Update X_B, X_N, B, N , go to step 1.

Example: Consider the LP

 $\begin{array}{ll} \max & z = 3x_1 + 5x_2 \\ \text{s.t.} & x_1 & \leq 4 \\ & 2x_2 \leq 12 \\ & 3x_1 + 2x_2 \leq 18 \\ & x_1, x_2 \geq 0 \end{array}$

Then, the standard form is

max $z = 3x_1 + 5x_2$ s.t. $x_1 + s_1 = 4$ $2x_2 + s_2 = 12$ $3x_1 + 2x_2 + s_3 = 18$ $x_1, x_2, s_1, s_2, s_3 \ge 0$

Iteration 0

Since
$$X_B = \begin{bmatrix} s_1 \\ s_2 \\ s_3 \end{bmatrix}$$
 and $X_N = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, then $B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = B^{-1}$.

Since $\overline{C}_N^T = C_B^T B^{-1} N - C_N^T = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 2 \\ 3 & 2 \end{bmatrix} - \begin{bmatrix} 3 & 5 \end{bmatrix} = \begin{bmatrix} -3 & -5 \end{bmatrix}$, then x_2 enter the

basic variable.

Since
$$\overline{a}_2 = B^{-1}a_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ 2 \end{bmatrix}$$
, $\overline{b} = B^{-1}b = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ 12 \\ 18 \end{bmatrix} = \begin{bmatrix} 4 \\ 12 \\ 18 \end{bmatrix}$, and

 $\min\left\{\times, \frac{12}{2}, \frac{18}{2}\right\} = 6, \text{ then } s_2 \text{ leave the basic variable.}$ Iteration 1

Operations Research

Since
$$X_B = \begin{bmatrix} s_1 \\ x_2 \\ s_3 \end{bmatrix}$$
 and $X_N = \begin{bmatrix} x_1 \\ s_2 \end{bmatrix}$, then $B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 2 & 1 \end{bmatrix}$ and $B^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & -1 & 1 \end{bmatrix}$.
Since $\overline{C}_N^T = C_B^T B^{-1} N - C_N^T = \begin{bmatrix} 0 & 5 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & -1 & 1 \end{bmatrix} - \begin{bmatrix} 3 & 0 \end{bmatrix} = \begin{bmatrix} -3 & \frac{5}{2} \end{bmatrix}$, then x_1 enter the

basic variable.

Since
$$\overline{a}_1 = B^{-1}a_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 3 \end{bmatrix}$$
, $\overline{b} = B^{-1}b = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ 12 \\ 18 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \\ 6 \end{bmatrix}$, and

 $\min\left\{\times,\times,\frac{6}{2}\right\} = 3$, then s_3 leave the basic variable. Iteration 2

Since
$$X_B = \begin{bmatrix} s_1 \\ x_2 \\ x_1 \end{bmatrix}$$
 and $X_N = \begin{bmatrix} s_2 \\ s_3 \end{bmatrix}$, then $B = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 2 & 3 \end{bmatrix}$ and $B^{-1} = \begin{bmatrix} 1 & \frac{1}{3} & -\frac{1}{3} \\ 0 & \frac{1}{2} & 0 \\ 0 & -\frac{1}{3} & \frac{1}{3} \end{bmatrix}$.

Since
$$\overline{C}_{N}^{T} = C_{B}^{T}B^{-1}N - C_{N}^{T} = \begin{bmatrix} 0 & 5 & 3 \end{bmatrix} \begin{bmatrix} 1 & \frac{1}{3} & -\frac{1}{3} \\ 0 & \frac{1}{2} & 0 \\ 0 & -\frac{1}{3} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 0 & 0 \end{bmatrix} = \begin{bmatrix} \frac{3}{2} & 1 \end{bmatrix}$$
, then

$$X_{B} = \begin{bmatrix} s_{1} \\ x_{2} \\ x_{1} \end{bmatrix} = B^{-1}b = \begin{bmatrix} 1 & \frac{1}{3} & -\frac{1}{3} \\ 0 & \frac{1}{2} & 0 \\ 0 & -\frac{1}{3} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} 4 \\ 12 \\ 18 \end{bmatrix} = \begin{bmatrix} 2 \\ 6 \\ 2 \end{bmatrix}, \text{ and } z_{\text{optimal}} = C_{B}^{T}B^{-1}b = C_{B}^{T}X_{B} = \begin{bmatrix} 0 & 5 & 3 \end{bmatrix} \begin{bmatrix} 2 \\ 6 \\ 2 \end{bmatrix} = 36.$$

Product Form of the Inverse

Consider a basis (matrix) *B* composed of the columns $a_{B_1}, a_{B_2}, \dots, a_{B_m}$ and suppose that B^{-1} is known.

$$B = \begin{bmatrix} a_{B_1} & a_{B_2} & \cdots & a_{B_m} \end{bmatrix}$$

Suppose that the nonbasic column a_k replaces a_{B_r} , resulting in the new basis (matrix) B_{new} .

$$B_{\text{new}} = \begin{bmatrix} a_{B_1} & a_{B_2} & \cdots & a_{B_{r-1}} & a_k & a_{B_{r+1}} & \cdots & a_{B_m} \end{bmatrix}$$

Noting that $a_k = B\overline{a}_k$ since $\overline{a}_k = B^{-1}a_k$ and $a_{B_i} = Be_i$ where e_i is a vector of zeros except for 1 at the *i*th position, we have

$$B_{\text{new}} = \begin{bmatrix} a_{B_1} & a_{B_2} & \cdots & a_{B_{r-1}} & a_k & a_{B_{r+1}} & \cdots & a_{B_m} \end{bmatrix}$$
$$= \begin{bmatrix} Be_1 & Be_2 & \cdots & Be_{r-1} & B\overline{a}_k & Be_{r+1} & \cdots & Be_m \end{bmatrix}$$
$$= B\begin{bmatrix} e_1 & e_2 & \cdots & e_{r-1} & \overline{a}_k & e_{r+1} & \cdots & e_m \end{bmatrix}$$
$$= BT$$

where T is the identity with the rth column replaced by \overline{a}_k , i.e.,

$$T = \begin{bmatrix} 1 & 0 & \cdots & 0 & \overrightarrow{a_{1k}} & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 & \overrightarrow{a_{2k}} & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & \overrightarrow{a_{rk}} & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & \overrightarrow{a_{mk}} & 0 & \cdots & 1 \end{bmatrix}$$

Since

Operations Research

, then the inverse of T is

$$T^{-1} = \begin{bmatrix} 1 & 0 & \cdots & 0 & -\frac{\overline{a}_{1k}}{\overline{a}_{rk}} & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 & -\frac{\overline{a}_{2k}}{\overline{a}_{rk}} & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & \frac{1}{\overline{a}_{rk}} & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & -\frac{\overline{a}_{mk}}{\overline{a}_{rk}} & 0 & \cdots & 1 \end{bmatrix}$$

Therefore, $B_{\text{new}}^{-1} = (BT)^{-1} = T^{-1}B^{-1} = EB^{-1}$.

Example: Consider the LP
max
$$z = 3x_1 + 5x_2$$

s.t. $x_1 + s_1 = 4$
 $2x_2 + s_2 = 12$
 $3x_1 + 2x_2 + s_3 = 18$
 $x_1, x_2, s_1, s_2, s_3 \ge 0$
1. If $X_B = \begin{bmatrix} s_1 \\ s_2 \\ s_3 \end{bmatrix}$, then $B_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = B_1^{-1}$.
2. If $X_B = \begin{bmatrix} s_1 \\ x_2 \\ s_3 \end{bmatrix}$, i.e., x_2 replace s_2 , then

$$\overline{a}_{2} = B_{1}^{-1}a_{2} = \begin{bmatrix} 0\\2\\2\\2 \end{bmatrix}$$

$$E_{1} = \begin{bmatrix} 1 & 0 & 0\\0 & \frac{1}{2} & 0\\0 & -1 & 1 \end{bmatrix}$$

$$B_{2}^{-1} = E_{1}B_{1}^{-1} = \begin{bmatrix} 1 & 0 & 0\\0 & \frac{1}{2} & 0\\0 & -1 & 1 \end{bmatrix}$$

3. If $X_B = \begin{bmatrix} s_1 \\ x_2 \\ x_1 \end{bmatrix}$, i.e., x_1 replace s_3 , then

$$\overline{a}_{1} = B_{2}^{-1}a_{1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}$$
$$E_{2} = \begin{bmatrix} 1 & 0 & -\frac{1}{3} \\ 0 & 1 & 0 \\ 0 & 0 & \frac{1}{3} \end{bmatrix}$$
$$B_{3}^{-1} = E_{2}B_{2}^{-1} = \begin{bmatrix} 1 & 0 & -\frac{1}{3} \\ 0 & 1 & 0 \\ 0 & 0 & \frac{1}{3} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & \frac{1}{3} & -\frac{1}{3} \\ 0 & \frac{1}{2} & 0 \\ 0 & -\frac{1}{3} & \frac{1}{3} \end{bmatrix}$$

Example: The LP is

 $\begin{array}{ll} \max & z = 3x_1 + x_2 + x_3 \\ \text{s.t.} & x_1 + x_2 + x_3 \leq 6 \\ & 2x_1 & -x_3 \leq 4 \\ & x_2 & +x_3 \leq 2 \\ & x_1, x_2, x_3 \geq 0 \end{array}$

Then, the standard form is

max s.t.

$$x_{1} + x_{2} + x_{3} + s_{1} = 6$$

$$2x_{1} - x_{3} + s_{2} = 4$$

$$x_{2} + x_{3} + s_{3} = 2$$

$$x_{1}, x_{2}, x_{3}, s_{1}, s_{2}, s_{3} \ge 0$$

 $z = 3x_1 + x_2 + x_3$

Iteration 0

Since
$$X_B = \begin{bmatrix} s_1 \\ s_2 \\ s_3 \end{bmatrix}$$
 and $X_N = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$, then $B_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = B_1^{-1}$.

Since
$$\overline{C}_N^T = C_B^T B^{-1} N - C_N^T = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & -1 \\ 0 & 1 & 1 \end{bmatrix} - \begin{bmatrix} 3 & 1 & 1 \end{bmatrix} = \begin{bmatrix} -3 & -1 & -1 \end{bmatrix}$$
, then x_1

enter the basic variable.

Since
$$\overline{a}_1 = B_1^{-1} a_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \quad \overline{b} = B^{-1} b = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 6 \\ 4 \\ 2 \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \\ 2 \end{bmatrix}, \text{ and } \min\left\{\frac{6}{1}, \frac{4}{2}, \times\right\} = 2,$$

then s_2 leave the basic variable. Iteration 1

Since
$$X_B = \begin{bmatrix} s_1 \\ x_1 \\ s_3 \end{bmatrix}$$
 and $X_N = \begin{bmatrix} x_2 \\ x_3 \\ s_2 \end{bmatrix}$, then $E = \begin{bmatrix} 1 & -\frac{1}{2} & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$ and $B_2^{-1} = EB_1^{-1} = \begin{bmatrix} 1 & -\frac{1}{2} & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$.
Since $\overline{C}_N^T = C_B^T B^{-1} N - C_N^T = \begin{bmatrix} 0 & 3 & 0 \end{bmatrix} \begin{bmatrix} 1 & -\frac{1}{2} & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 1 & 1 & 0 \end{bmatrix} - \begin{bmatrix} 1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} -1 & -\frac{5}{2} & \frac{3}{2} \end{bmatrix}$, then

 x_3 enter the basic variable.

Operations Research

Since
$$\overline{a}_3 = B_2^{-1}a_3 = \begin{bmatrix} 1 & -\frac{1}{2} & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{3}{2} \\ -\frac{1}{2} \\ 1 \end{bmatrix} , \quad \overline{b} = B_2^{-1}b = \begin{bmatrix} 1 & -\frac{1}{2} & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 6 \\ 4 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \\ 2 \end{bmatrix} , \quad \text{and}$$

$$\min\left\{\frac{4}{\frac{3}{2}},\times,\frac{2}{1}\right\} = 2, \text{ then } s_3 \text{ leave the basic variable.}$$

Iteration 2

Since
$$X_B = \begin{bmatrix} s_1 \\ x_1 \\ x_3 \end{bmatrix}$$
 and $X_N = \begin{bmatrix} x_2 \\ s_2 \\ s_3 \end{bmatrix}$, then $E = \begin{bmatrix} 1 & 0 & -\frac{3}{2} \\ 0 & 1 & \frac{1}{2} \\ 0 & 0 & 1 \end{bmatrix}$ and
 $B_3^{-1} = EB_2^{-1} = \begin{bmatrix} 1 & 0 & -\frac{3}{2} \\ 0 & 1 & \frac{1}{2} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -\frac{1}{2} & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{3}{2} \\ 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 1 \end{bmatrix}.$
Since $\overline{C}_N^T = C_B^T B^{-1} N - C_N^T = \begin{bmatrix} 0 & 3 & 1 \end{bmatrix} \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{3}{2} \\ 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 1 \end{bmatrix} - \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} - \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} \frac{3}{2} & \frac{3}{2} & \frac{5}{2} \end{bmatrix},$ then

$$X_{B} = \begin{bmatrix} s_{1} \\ x_{1} \\ x_{3} \end{bmatrix} = B_{3}^{-1}b = \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{3}{2} \\ 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 6 \\ 4 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}, \text{ and } z_{\text{optimal}} = C_{B}^{T}B^{-1}b = C_{B}^{T}X_{B} = \begin{bmatrix} 0 & 3 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix} = 11.$$

The LINDO Computer Package

- 1. Setup the LINDO package
- 2. Execute Lindow32

Appendix 1 (Proof of Fundamental Theorem of Linear Programming)

Proof of (1):

Denote the columns of A by a_1, a_2, \dots, a_n . Suppose $X = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix}^T$ is a feasible solution. Then, in terms of the columns of A, this solution satisfies:

$$a_1x_1 + a_2x_2 + \dots + a_nx_n = b$$

Assume that exactly p of the variables x_i are greater than zero, and for convenience, that they are first p variables. Thus,

$$a_1x_1 + a_2x_2 + \dots + a_px_p = b$$

There are two cases, corresponding as to whether the set a_1, a_2, \dots, a_p is linearly independent or linearly dependent.

CASE 1: Assume a_1, a_2, \dots, a_p is linearly independent. Then $p \le m$.

If p = m, the solution is basic and the proof is complete.

If p < m, then, since A has rank m, m-p vectors can be found from the remaining n-p vectors so that the resulting set of m vectors is linearly independent. Assigning the value zero to the corresponding m-p variables yields a (degenerate) basic feasible solution.

CASE 2: Assume a_1, a_2, \dots, a_n is linearly dependent. Then there is a nontrivial linear

combination of these vectors that is zero. Thus, there are constants y_1, y_2, \dots, y_p , at least one of which can be assumed to be positive, such that

$$a_1y_1 + a_2y_2 + \dots + a_py_p = 0$$

Multiplying this equation by a scalar ε and subtracting it from $a_1x_1 + a_2x_2 + \dots + a_px_p = b$, we obtain

$$a_1(x_1 - \varepsilon y_1) + a_2(x_2 - \varepsilon y_2) + \dots + a_p(x_p - \varepsilon y_p) = b$$

This equation holds for every ε , and for each ε the components $x_i - \varepsilon y_i$ correspond to a solution of the linear equalities—although they may violate $x_i - \varepsilon y_i \ge 0$. Denoting $y = \begin{bmatrix} y_1 & y_2 & \cdots & y_p & 0 & 0 & \cdots & 0 \end{bmatrix}^T$, we see that for any ε

$$X - \varepsilon Y$$

is a solution to the equalities. For $\varepsilon = 0$, this reduces to the origin feasible solution. As ε is increased from zero, the various components increase, decrease, or remain constant, depending upon whether the corresponding y_i is negative, positive, or zero. Since we

assume at least one y_i is positive, at least one component will decrease as ε is increased. Increase ε to the first point where one or more components become zero. Specifically, set

$$\varepsilon = \min\left\{\frac{x_i}{y_i} : y_i > 0\right\}$$

For this value of ε the solution given by $x - \varepsilon y$ is feasible and has at most p-1 positive variables. Repeating this process if necessary, we can eliminate positive variables until we have a feasible solution with corresponding columns that are linearly independent. AT that point CASE 1 applies.

Proof of (2):

Let $X = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}^T$ be an optimal feasible solution and, as in the proof of (1)

above, suppose there are exactly p positive variables a_1, a_2, \dots, a_p . Again there are two

cases; and CASE 1, corresponding to linear independence, is exactly the same as before.

CASE2 also goes exactly the same before, but it must be shown that for any ε the solution $X - \varepsilon Y$ is optimal. To show this, note that the value of the solution $X - \varepsilon Y$ is $C^{T}X - \varepsilon C^{T}Y$

For ε sufficiently small in magnitude, $X - \varepsilon Y$ is a feasible solution for positive or negative values of ε . Thus, we conclude that $C^T Y = 0$. For, if $C^T y \neq 0$, an ε of small magnitude and proper sign could be determined so as to render $C^T X - \varepsilon C^T Y$ smaller than $C^T X$ while maintaining feasibility. This would violate the assumption of optimality of X and hence we must have $C^T Y = 0$.

Having established that the new feasible solution with fewer positive components is also optimal, the remainder of the proof may be completed exactly as in part (1).

Appendix 2 (Proof of Equivalence of Extreme Points and Basic Feasible Solution)

Suppose first that $X = \begin{bmatrix} x_1 & x_2 & \cdots & x_m & 0 & 0 & \cdots & 0 \end{bmatrix}^T$ is a basic feasible solution to AX = b and $X \ge 0$... Then

$$a_1x_1 + a_2x_2 + \dots + a_mx_m = b$$

where a_1, a_2, \dots, a_m , the first *m* columns of *A*, are linearly independent. Suppose that *X* could be expressed as a convex combination of two other points in *K*; say, $X = \alpha Y + (1-\alpha)Z$, $0 < \alpha < 1$, $Y \neq Z$. Since all components of *X*, *Y*, *Z* are nonnegative and since $0 < \alpha < 1$, it follows immediately that the last n-m components of *Y* and *Z* are zero. Thus, in particular, we have

$$a_1y_1 + a_2y_2 + \dots + a_my_m = b$$

and

$$a_1 z_1 + a_2 z_2 + \dots + a_m z_m = b$$

Since the vectors a_1, a_2, \dots, a_m are linearly independent, it follows that X = Y = Z and hence X is an extreme point of K.

Conversely, assume that X is an extreme point of K. Let us assume that the nonzero components of X are the first k components. Then

$$a_1x_1 + a_2x_2 + \dots + a_mx_m = b$$

with $x_i > 0$, $i = 1, 2, \dots, k$. To show that X is a basic feasible solution it must be shown that the vectors a_1, a_2, \dots, a_m are linearly independent. We do this by contradiction. Suppose that a_1, a_2, \dots, a_m are linearly dependent. Then there is a nontrivial linear combination that is zero:

$$a_1y_1 + a_2y_2 + \dots + a_ky_k = 0$$

Define the *n*-vector $Y = \begin{bmatrix} y_1 & y_2 & \cdots & y_k & 0 & 0 & \cdots & 0 \end{bmatrix}$. Since $x_i > 0$, , it is possible to select ε such that

$$X + \varepsilon Y \ge 0$$
 and $X - \varepsilon Y \ge 0$

We then have $X = \frac{1}{2}(X + \varepsilon Y) + \frac{1}{2}(X - \varepsilon Y)$ which expresses X as a convex combination of two distinct vectors in K. This cannot occur, since X is an extreme point of K. Thus, a_1, a_2, \dots, a_m are linearly independent and X is a basic feasible solution.