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The Linear Programming-the Simplex Algorithm
Linear Programming (LP)(線性規劃) is a tool for solving optimization problems. In 1947,

George Dantzig developed an efficient method, the simplex algorithm(單形法), for solving linear

programming problems. Since the development of the simplex algorithm, LP has been used to solve
optimization problems in industries are diverse as banking, education, forestry, petroleum, and
trucking. In a survey of Fortune 500 firms, 85% of the respondents said they had used LP. As a
measure of the importance of LP in OR, approximately 70% of this book will be devoted to LP and
related optimization techniques.

We devote to a discussion of the simplex algorithm, which is used to solve even very large
LPs. In many industrial applications, the simplex algorithm is used to solve LPs with thousands of
constraints and variables. We should explain how the simplex algorithm can be used to find optimal
solutions to LPs., and detail how two state-of-the-art computer packages (LINDO) can be used to
solve LPs.
Type 1: Graphical Solution(圖解法)

Example:
The WYNDOR GLASS CO. produces high-quality glass products, including windows and

glass doors. It has three plants. Aluminum frames and hardware are made in Plant 1, wood frame
are madder in Plant 2, and Plant 3 produces the glass and assembles the products.

Because of declining earnings, top management has decided to revamp the company’s product
line. Unprofitable products are being discontinued, releasing production capacity to launch two new
products having large sales potential:

Product 1: An 8-foot glass door with aluminum framing.
Product 2: A 4×6 foot double-hung wood-framed window.

Table Data for the Wyndor Glass Co. problem

Production Time per Batch, Hours

Product
Plant 1 2

Production Time Available
per Week, Hours

1 1 0 4

2 0 2 12

3 3 2 18

Profit per batch $3000 $5000

Solution: We define

1x number of batches of product 1 produced per week

2x number of batches of product 2 produced per week
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An LP is
max 1 23 5z x x 
s.t. 1 4x 

2

1 2

1 2

2 12

3 2 18
, 0

x

x x
x x


 


The solution indicates that the Wyndor Glass Co. should produce products 1 and 2 at the rate of 2
batches per week and 6 batches per week, respectively, with a resulting total profit of $36000 per
week.

Terminology for Solutions of the Model
1. A feasible solution(可行解) is a solution for which all the constraints are satisfied.
2. An infeasible solution(不可行解) is a solution for which at least one constraint is

violated.
3. The feasible region(可行解區域) is the collection of all feasible solutions.
4. An optimal solution(最佳解) is a feasible solution that has the most favorable value of

the objective function.
5. A corner-point feasible (CPF; basic feasible)(基本可行解) solution is a solution that

lies at a corner of the feasible region.
Relationship between optimal solutions and CPF solutions

Consider any linear programming problem with feasible solutions and a bounded
feasible region. The problem must posses CPF solutions and at least one optimal
solution. Furthermore, the best CPF solution must be an optimal solution. Thus, if a
problem has exactly one optimal solution, it must be a CPF solution. If the problem
has multiple optimal solutions, at least two must be CPF solution.

The solution for Linear Programming:
1. Uniquely optimal solution(唯一解)
2. Multiple optimal solutions(無限多組解)
3. Unbounded(無界)
4. No feasible solution(無可行解)

Assumptions of Linear Programming:
1. Proportionality(可比例性) 非線性規劃(Nonlinear Programming)
2. Additivity(可加性)  非線性規劃(Nonlinear Programming)
3. Divisibility(可分性)  整數規劃(Integer Programming)
4. Certainty(確定性)  隨機模式(Stochastic Model)

2 23 5 15x x 

1x

2x

1 23 2 18x x 

1 4x 

22 12x 

2 23 5 0x x 

2 23 5 30x x 
2 23 5 36x x 

(2,6)

(4,0)

(0,6)

(4,3)
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Type 2: Simplex method(單形法)

Convert an LP to Standard Form
We have seen that an LP can have both equality and inequality constraints. It also can have

variables that are require to be nonnegative as well as those allowed to be unrestricted in sign.
Before the simplex algorithm can be used to solve an LP, the LP must be converted into an
equivalent problem in which all constraints are equation and all variables are nonnegative. An
LP in this form is said to be in standard form.

Standard Form
max(or min) 1 1 2 2 n nz c x c x c x   
s.t. 11 1 12 2 1 1n na x a x a x b   

21 1 22 2 2 2

1 1 2 2

0( 1, 2, , )

n n

m m mn n m

i

a x a x a x b

a x a x a x b

x i n

   

   

 


  




Example Leather Limited
Leather Limited manufacturers two types of belts(腰帶): the deluxe(高級的)model and the

regular model. Each type requires 1 sq yd of leather(皮革). A regular belt requires 1 hour of skilled

labor, and a deluxe belt requires 2 hours. Each week, 40 sq yd of leather and 60 hours of skilled
labor are available. Each regular belt contributes $3 to profit and each deluxe belt, $4. If we define

1x number of deluxe belts produced weekly

2x number of regular belts produced weekly

An LP is
max 1 24 3z x x 
s.t. 1 2 40x x 

1 2

1 2

2 60

, 0

x x

x x

 



A standard form of LP is
max 1 24 3z x x 
s.t. 1 2 1 40x x s  

1 2 2

1 2 1 2

2 60

, , , 0

x x s

x x s s

  



Example
An LP is

min 1 2 3 450 20 30 80z x x x x   
s.t. 1 2 3 4400 200 150 500 500x x x x   

1 2

1 2 3 4

1 2 3 4

1 2 3 4

3 2 6

2 2 4 4 10

2 4 5 8

, , , 0

x x

x x x

x x x

x x x x

 
   

   


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A standard form of LP is
min 1 2 3 450 20 30 80z x x x x   
s.t. 1 2 3 4 1400 200 150 500 500x x x x e    

1 2 2

1 2 3 4 3

1 2 3 4 4

1 2 3 4 1 2 3 4

3 2 6
2 2 4 4 10

2 4 5 8

, , , , , , , 0

x x e
x x x e

x x x e

x x x x e e e e

  
    

    



Preview of the Simplex Algorithm
max 1 1 2 2 n nz c x c x c x   
s.t. 11 1 12 2 1 1n na x a x a x b   

21 1 22 2 2 2

1 1 2 2

0( 1, 2, , )

n n

m m mn n m

i

a x a x a x b

a x a x a x b

x i n

   

   

 


  




Matrix Form:

max Tz C X
s.t. AX b

0X 

where

1

2T

n

c
c

C

c

 
 
 
 
 
 

 ,

11 12 1

21 22 2

1 2

n

n

m m mn

a a a
a a a

A

a a a

 
 
 
 
 
 




   


,

1

2

n

x
x

X

x

 
 
 
 
 
 

 , and

1

2

m

b
b

b

b

 
 
 
 
 
 



Basic Properties of Liner Programming
Consider the system of equalities

AX b

where X is an n -vector, b an m -vector, and A is an m n matrix. Suppose that from the
n columns of A we select a set of m linearly independent columns (such a set exists if the rank
of A is m ). For notational simplicity assume that we select the first m columns of A and
denote the m m matrix determined by these columns by B . The matrix B is then nonsingular
and we may uniquely solve the equation

BBX b

for the m vector BX . By putting  ,0BX X


(that is, setting the first m components of X

equal to those of BX and the remaining components equal to zero), we obtain a solution to

AX b . This leads to the following definition.
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Definition of Basic Variable
Given the set of m simultaneous linear equations in n unknowns AX b , let B be
any nonsingular m m submatrix made up of columns of A . Then, if all m n
components of X not associated with columns of B are set equal to zero, the solution
to the resulting set of equations is said to be a basic solution(基解) to (1) with respect to

the basis B . The components of X associated with columns of B are called basic
variables(BV, 基變數), otherwise are called nonbasic variables(NBV, 非基變數).

To find a basic solution to AX b , we choose a set of n m variables (the nonbasic variables,
or NBV(非基變數)) and set each of these variables equal to 0. Then we solve for the values of the

remaining m variables (the basic variables, BV) that satisfy AX b .
Example:

1 2

2 3

3
1

x x
x x

 
  

If NBV 3{ }x , then BV 1 2{ , }x x . We obtain the values of the basic variables by setting

3 0x  and solving

1 2

2

3

1

x x

x

 

 
We find that 1 22, 1x x  .

Definition of Feasible and Basic Feasible Solution
A vector X satisfying AX b and 0X  is said to the feasible solution(可行解)

for these constraints.
A feasible solution to the constraints AX b and 0X  that is also basic solution is
said to be a basic feasible solution(bfs; 基本可行解).

Corresponding to a linear program in standard form

max(or min) Tz C X
s.t. AX b

0X 

a feasible solution to the constraints that achieves the maximum (or minimum) value of the
objective function subject to those constraints is said to be an optimal feasible solution. If this
solution is basic, it is an optimal basic feasible solution.
Theorem (Fundamental Theorem of Linear Programming)

Given a linear programming in standard form where A is an m n matrix of rank m .
(1) If there is a feasible solution, there is a basic feasible solution.
(2) If there is an optimal feasible solution, there is an optimal basic feasible solution.

Proof: (See Appendix 1)
Remark:

This theorem reduces the task of solving a linear programming problem to that of searching
over basic feasible solutions. Since for a problem having n variables and m constraints
there are at most
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!
!( )!

n
m

n
C

m n m




basic solutions, there are only a finite number of possibilities.

Definition of Convex

A set C in nE is said to be convex(凸集合) if for every 1 2,x x C and every real

number , 0 1  , the point 1 2(1 )x x C    .

Definition of Half Space

Let a be a nonzero vector in nE and let c a real number. Corresponding to the
hyperplane(半平面) { : }TH x a x c  are the positive and negative closed half spaces

{ : }

{ : }

T

T

H x a x c

H x a x c




 

 

and the positive and negative open half spaces

{ : }

{ : }

T

T

H x a x c

H x a x c




 

 

Definition of Polytope
A set which can be expressed as the intersection of a finite number of closed half spaces
is said to be a convex polytope.

Definition of Extreme Point
A point x in a convex set C is said to be an extreme point(極點) of C if there are
no two distinct points 1x and 2x in C such that 1 2(1 )x x x    for some ,

0 1  .
Theorem (Equivalence of Extreme Points and Basic Feasible Solution)

Let A be an m n matrix of rank m and b an m -vector. Let K be the convex
polytope consisting of all n -vectors X satisfying

0
AX b
X




A vector X is an extreme point of K if and only if X is a basic feasible solution to
AX b and 0X  .

Proof: (See the Appendix 2)
Corollary:

If the convex K corresponding to AX b and 0X  is nonempty, it has at least
one extreme point.

Corollary:
If there is a finite optimal solution to a linear programming problem, there is a finite
optimal solution which is an extreme point of the constraint set.

Corollary:
The constraint set K corresponding to AX b and 0X  possesses at most a finite
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number of extreme points.

Proof:
There are obviously only a finite of basic solutions obtained by selecting m basis vectors
from the n columns of A . The extreme points of K are a subset of these basic solutions.

Example:
max 1 24 3z x x 
s.t. 1 2 40x x 

1 2

1 2

2 60

, 0

x x

x x

 



max 1 24 3z x x 
s.t. 1 2 1 40x x s  

1 2 2

1 2 1 2

2 60

, , , 0

x x s

x x s s

  



Basic
Variables

Nonbasic Variables Basic Feasible Solution Corresponds to Corner Point

1 2,x x 1 2,s s 1 2 20x x  E

1 1,x s 2 2,x s 1 130, 10x s  C

1 2,x s 2 1,x s 1 240, 20x s  Not a bfs

2 1,x s 1 2,x s 2 160, 20x s  Not a bfs

2 2,x s 1 1,x s 2 240, 20x s  B

1 2,s s 1 2,x x 1 240, 60s s  F

Adjacent Basic Feasible Solutions
For any LP with m constraints, two basic feasible solutions are said to be adjacent(相
鄰) if their sets of basic variables have 1m basic variables in common.

Example:
max 1 24 3z x x 
s.t. 1 2 1 40x x s  

1 2 2

1 2 1 2

2 60

, , , 0

x x s

x x s s

  



The basic feasible solutions (0,0,40,60), (30,0,10,0) are adjacent.
The basic feasible solutions (30,0,10,0), (20,20,0,0) are adjacent.
The basic feasible solutions (20,20,0,0), (0,40,20,0) are adjacent.
The basic feasible solutions (0,0,40,60), (20,20,0,0) are not adjacent.

The Simplex Algorithm
Step 1: Convert the LP to standard form.

max 1 1 2 2 n nz c x c x c x   
s.t. 11 1 12 2 1 1n na x a x a x b   

21 1 22 2 2 2

1 1 2 2

0( 1, 2, , )

n n

m m mn n m

i

a x a x a x b

a x a x a x b

x i n

   

   

 


  



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Step 2: Obtain a bfs (if possible) from the standard form.
Step 3: Determine whether the current bfs is optimal.

If the 0jc  , then current basic feasible solution is optimal, stop.

Step 4: If the current bfs is not optimal, then determine which nonbasic variable should become a
basic variable and which basic variable should become a nonbasic variable to find a new bfs
with a better objective function value.

Select qx such that min{ | 0, is a nonbasic variable}q j j jc c c x  to determine which

nonbasic variable is to become basic.

Calculuate the ratio i

ij

b
a

for 0ija  , 1, 2, ,i m  . If no 0ija  , stop; the problem is

unbounded. Otherwise, select p as the index i corresponding to the minimum ratio.

Step 5: Use EROs to find the new bfs with the better objective function value. Go back to step 3.
Pivot on the thpq element, updating all rows including the last.

Example: max 1 2 360 30 20z x x x  
s.t. 1 2 38 6 48x x x  

1 2 3

1 2 3

2

1 2 3

4 2 1.5 20

2 1.5 0.5 8

5
, , 0

x x x

x x x

x
x x x

  

  




Convert the standard form:
max 1 2 360 30 20 0z x x x   
s.t. 1 2 3 18 6 48x x x s   

1 2 3 2

1 2 3 3

2 4

1 2 3 1 2 3 4

4 2 1.5 20

2 1.5 0.5 8

5
, , , , , , 0

x x x s

x x x s

x s
x x x s s s s

   

   

 


Use the Tabular Form:

variable 1x 2x 3x 1s 2s 3s 4s RHS Ratio
z -60 -30 -20 0 0 0 0 0

1s 8 6 1 1 0 0 0 48 48/8=6

2s 4 2 1.5 0 1 0 0 20 20/4=5

3s 2 1.5 0.5 0 0 1 0 8 4/2=4

4s 0 1 0 0 0 0 1 5 *
Since min{ 60, 30, 20} 60    , then 1x enter the basic variable.
Since min{6,5,4,*} 4 , then 3s leave the basic variable



Operations Research

9 9

variable 1x 2x 3x 1s 2s 3s 4s RHS Ratio
z 0 15 -5 0 0 30 0 240

1s 0 0 -1 1 0 -4 0 16 *

2s 0 -1 0.5 0 1 -2 0 4 4/0.5=8

1x 1 0.75 0.25 0 0 0.5 0 4 4/0.25=16

4s 0 1 0 0 0 0 1 5 *
Since min{ 5} 5  , then 3x enter the basic variable.
Since min{*,8,16,*} 8 , then 2s leave the basic variable

variable 1x 2x 3x 1s 2s 3s 4s RHS Ratio
z 0 5 0 0 10 10 0 280

1s 0 -2 0 1 2 -8 0 24

3x 0 -2 1 0 2 -4 0 8

1x 1 1.25 0 0 -0.5 1.5 0 2

4s 0 1 0 0 0 0 1 5
Hence, 1 2 3 42, 0, 8, 0, 280x x x x z     .

Example: (Using the Simplex Algorithm to Solve Minimization Problems)
min 1 22 3z x x 
s.t. 1 2 4x x 

1 2

1 2

6

, 0

x x

x x

 



Convert the standard form:
max 1 22 3 0z x x  
s.t. 1 2 1 4x x s  

1 2 2

1 2 1 2

6

, , , 0

x x s

x x s s

  



Use the Tabular Form:

variable 1x 2x 1s 2s RHS Ratio
z 2 -3 0 0 0

1s 1 1 1 0 4 4/1=4

2s 1 -1 0 1 6 *
Since min{ 3} 3  , then 2x enter the basic variable.
Since min{4,*} 4 , then 1s leave the basic variable

variable 1x 2x 1s 2s RHS Ratio
z 5 0 3 0 12

2x 1 1 1 0 4

2s 2 0 1 1 10
Hence, 1 20, 4, 12x x z   .
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Example: (Alternative Optimal Solutions)
max 1 2 360 35 20z x x x  
s.t. 1 2 38 6 48x x x  

1 2 3

1 2 3

2

1 2 3

4 2 1.5 20

2 1.5 0.5 8

5
, , 0

x x x

x x x

x
x x x

  

  




Convert the standard form:
max 1 2 360 35 20z x x x  
s.t. 1 2 3 18 6 48x x x s   

1 2 3 2

1 2 3 3

2 4

1 2 3 1 2 3 4

4 2 1.5 20

2 1.5 0.5 8

5
, , , , , , 0

x x x s

x x x s

x s
x x x s s s s

   

   

 


Use the Tabular Form:

variable 1x 2x 3x 1s 2s 3s 4s RHS Ratio
z -60 -35 -20 0 0 0 0 0

1s 8 6 1 1 0 0 0 48 48/8=6

2s 4 2 1.5 0 1 0 0 20 20/4=5

3s 2 1.5 0.5 0 0 1 0 8 4/2=4

4s 0 1 0 0 0 0 1 5 *
Since min{ 60, 35, 20} 60    , then 1x enter the basic variable.
Since min{6,5,4,*} 4 , then 3s leave the basic variable

variable 1x 2x 3x 1s 2s 3s 4s RHS Ratio
z 0 10 -5 0 0 30 0 240

1s 0 0 -1 1 0 -4 0 16 *

2s 0 -1 0.5 0 1 -2 0 4 4/0.5=8

1x 1 0.75 0.25 0 0 0.5 0 4 4/0.25=16

4s 0 1 0 0 0 0 1 5 *
Since min{ 5} 5  , then 3x enter the basic variable.
Since min{*,8,16,*} 8 , then 2s leave the basic variable.

variable 1x 2x 3x 1s 2s 3s 4s RHS Ratio
z 0 0 0 0 10 10 0 280

1s 0 -2 0 1 2 -8 0 24

3x 0 -2 1 0 2 -4 0 8

1x 1 1.25 0 0 -0.5 1.5 0 2

4s 0 1 0 0 0 0 1 5
If 2x enter the basic variable and 1x leave the basic variable, then
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variable 1x 2x 3x 1s 2s 3s 4s RHS Ratio
z 0 0 0 0 10 10 0 280

1s 1.6 0 0 1 1.2 -5.6 0 27.2

3x 1.6 0 1 0 1.2 -1.6 0 11.2

2x 0.8 1 0 0 -0.4 1.2 0 1.6

4s -0.8 0 0 0 0.4 -1.2 1 3.4
Hence, 1 2 3 42, 0, 8, 0, 280x x x x z     , or 1 2 3 40, 1.6, 11.2, 0, 280x x x x z     .

Example: (Unbounded LPs)
max 1 2 3 436 30 3 4z x x x x   
s.t. 1 2 3 5x x x  

1 2 4

1 2 3 4

6 5 10
, , , 0
x x x

x x x x
  



Convert the standard form:
max 1 2 3 436 30 3 4 0z x x x x    
s.t. 1 2 3 1 5x x x s   

1 2 4 2

1 2 3 4 1 2

6 5 10
, , , , , 0
x x x s

x x x x s s
   



Table Form

variable 1x 2x 3x 4x 1s 2s RHS Ratio
z -36 -30 3 4 0 0 0

1s 1 1 -1 0 1 0 5 5/1=5

2s 6 5 0 -1 0 1 10 10/6
Since min{ 36, 30} 36   , then 1x enter the basic variable.

Since
10 10

min{5, }
6 6

 , then 2s leave the basic variable.

variable 1x 2x 3x 4x 1s 2s RHS Ratio
z 0 0 3 -2 0 6 60

1s 0 1
6 -1 1

6 1 1
6 10

3
10 1

3 6/ 20

1x 1 5
6 0 1

6 0 1
6

5
3 *

Since min{ 2} 2  , then 4x enter the basic variable.
Since min{20,*} 20 , then 1s leave the basic variable.

variable 1x 2x 3x 4x 1s 2s RHS Ratio
z 0 1

3 -9 0 12 4 100

4x 0 1 -6 1 6 -1 20

1x 1 1 -1 0 1 0 5

We can find points in the feasible region having arbitrarily large z -values.
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Definition of Degeneracy
An LP is degenerate(退化) if it has at least one bfs in which a basic variable is equal to

zero.
Example: max 1 25 2z x x 

s.t. 1 2 6x x 

1 2

1 2

0

, 0

x x

x x

 



Convert the standard form:
max 1 25 2 0z x x  
s.t. 1 2 1 6x x s  

1 2 2

1 2 1 2

0

, , , 0

x x s

x x s s

  



variable 1x 2x 1s 2s RHS Ratio
z -5 -2 0 0 0

1s 1 1 1 0 6 6/1=6

2s 1 -1 0 1 0 0/1=0
Since min{ 5, 2} 5   , then 1x enter the basic variable.
Since min{6,0} 0 , then 2s leave the basic variable.

variable 1x 2x 1s 2s RHS Ratio
z 0 -7 0 5 0

1s 0 2 1 -1 6 6/2=3

1x 1 -1 0 1 0 *
Since min{ 7} 7  , then 2x enter the basic variable.
Since min{3,*} 3 , then 1s leave the basic variable.

variable 1x 2x 1s 2s RHS Ratio
z 0 0 3.5 1.5 21

2x 0 1 0.5 -0.5 3

1x 1 0 0.5 0.5 3

Termination is not guaranteed foe degenerate problems. Consider the linear program
max 3 1

1 2 3 44 50150 6z x x x x   
s.t. 1 1

1 2 3 44 2560 9 0x x x x   

1 1
1 2 3 42 50

3

1 2 3 4

90 3 0

1

, , , 0

x x x x

x

x x x x

   





We will apply the simplex method to this problem, using the most negative reduced cost to select
the entering variable, and breaking ties in the ratio test by selecting the first candidate row. If this is

done, then the simplex method cyclesendlessly repeating the same sequence of bases with no
improvement in the objective and without finding the optimal solution.
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variable 1x 2x 3x 4x 1s 2s 3s RHS
z 3

4 150 1
50 6 0 0 0 0

1s 1
4 -60 1

25 9 1 0 0 0

2s 1
2 -90 1

50 3 0 1 0 0

3s 0 0 1 0 0 0 1 1

variable 1x 2x 3x 4x 1s 2s 3s RHS
z 0 -30 7

50 33 3 0 0 0

1x 1 -240 4
25 36 4 0 0 0

2s 0 30 3
50 -15 -2 1 0 0

3s 0 0 1 0 0 0 1 1

variable 1x 2x 3x 4x 1s 2s 3s RHS
z 0 0 2

25 18 1 1 0 0

1x 1 0 8
25 -84 -12 8 0 0

2x 0 1 1
500

1
2 1

15 1
30 0 0

3s 0 0 1 0 0 0 1 1

variable 1x 2x 3x 4x 1s 2s 3s RHS
z 1

4 0 0 -3 -2 3 0 0

3x 25
8 0 1 525

2 75
2 25 0 0

2x 1
160 1 0 1

40
1

120
1
60 0 0

3s 25
8 0 1 525

2
75
2 -25 1 1

variable 1x 2x 3x 4x 1s 2s 3s RHS
z 1

2 120 0 0 -1 1 0 0

3x 125
2 10500 1 0 50 -150 0 0

4x 1
4 40 0 1 1

3
2
3 0 0

3s 125
2 -10500 0 0 -50 150 1 1

variable 1x 2x 3x 4x 1s 2s 3s RHS
z 7

4 330 1
50 0 0 -2 0 0

5x 5
4 210 1

50 0 1 -3 0 0

4x 1
6 -30 1

150 1 0 1
3 0 0

3s 0 0 1 0 0 0 1 1
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variable 1x 2x 3x 4x 1s 2s 3s RHS
z 3

4 150 1
50 6 0 0 0 0

1s 1
4 -60 1

25 9 1 0 0 0

2s 1
2 -90 1

50 3 0 1 0 0

3s 0 0 1 0 0 0 1 1

The final basis is the same as the initial basis, so that the simplex method has made no progress and
will continue to cycle through these six bases indefinitely.

A variety of techniques have been developed that guarantee termination of the simplex method
even on degenerate problems. One of these, discovered by Bland and often referred to as “Bland’s
rule,”is described here.

variable 1x 2x 3x 4x 1s 2s 3s RHS
z 1

2 120 0 0 -1 1 0 0

3x 125
2 10500 1 0 50 -150 0 0

4x 1
4 40 0 1 1

3
2
3 0 0

3s 125
2 -10500 0 0 -50 150 1 1

variable 1x 2x 3x 4x 1s 2s 3s RHS
z 0 36 0 0 7

5 11
5

1
125

1
125

3x 0 0 1 0 0 0 1 1

4x 0 -2 0 1 2
15

1
15 1

250
1

250

1x 1 -168 0 0 4
5 12

5
2

125
2

125

variable 1x 2x 3x 4x 1s 2s 3s RHS
z 0 15 0 21

2 0 3
2

1
20

1
20

3x 0 0 1 0 0 0 1 1

1s 0 -15 0 15
2 1 1

2 3
100

3
100

1x 1 -180 0 6 0 2 2
50

2
50

Note: Bland’s rule can be inefficient if applied at every simplex iteration since it may select entering
variables that do not greatly improve the value of the objective function.
(Reference: Robert G. Bland, New finite pivoting rules for the simplex method, Mathematics of
Operations Research 2 (1997) pp. 103-107)

The Big M Method
Recall that the simplex algorithm requires a stating bfs. In all the problems we have solved so far,
we found a starting bfs by using the slack variables as our basic variables. If an LP has any  or
equality constraints, however, a starting bfs may not readily apparent. When a bfs is not readily
apparent, the Big M method (or the two-phase simplex) may be used to solve the problem. The Big
M method first find a bfs by adding “artificial” variables to the problem. The objective function of



Operations Research

15 15

the original LP must, of course, be modified to ensure that the artificial variables are all equal to 0 at
the conclusion of the simplex algorithm.

Example: Bevco
Bevco manufactures an orange-flavored soft drink called Oranj by combining orange soda and
orange juice. Each ounce of orange soda contains 0.5 oz of sugar and 1 mg of vitamin C. Each
ounce of orange juice contains 0.25 oz of sugar and 3 mg of vitamin C. It costs Bevco 2￠ to
produce an ounce of orange soda and 3￠ to produce an ounce of orange juice. Bevco’s marketing 

department has decided that each 10-oz bottle of Oranj must contain at least 20 mg of vitamin C and
at most 4 oz of sugar. Use linear programming to determine how Bevco can meet the marketing
department’s requirements at minimum cost.
Solution: Let

1x  number of ounces of orange soda in a bottle of Oranj

2x  number of ounces of orange juice in a bottle of Oranj

Then the appropriate LP is
min 1 22 3z x x 
s.t. 1 1

2 41 2 4x x 

1 2

1 2

1 2

3 20
10

, 0

x x
x x

x x

 
 



Convert the standard form:
max 1 2 2 32 3z x x Ma Ma    
s.t. 1 1

2 41 2 1 4x x s  

1 2 2 2

1 2 3

1 2 1 2 2 3

3 20
10

, , , , , 0

x x e a
x x a

x x s e a a

   
  



Tabular Form:

1x 2x 1s 2e 2a 3a RHS Ratio
z 2 3 0 0 M M 0

1s 1
2

1
4 1 0 0 0 4

2a 1 3 0 -1 1 0 20

3a 1 1 0 0 0 1 10

The initial table is

1x 2x 1s 2e 2a 3a RHS Ratio
z 2 2M  4 3M  0 M 0 0 30M

1s 1
2

1
4 1 0 0 0 4 16

2a 1 3 0 -1 1 0 20 20/3

3a 1 1 0 0 0 1 10 10
Since min{ 2 2, 4 3} 4 3M M M      , then 2x enter the basic variable.

Since
20 20

min{16, ,10}
3 3

 , then 2a leave the basic variable.
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1x 2x 1s 2e 2a 3a RHS Ratio
z 2 3

3
M  0 0 3

3
M  4 3

3
M  0 10 60

3
M 

1s 5
12 0 1 1

12
1
12 0 7

3 28/5

2x 1
3 1 0 1

3 1
3 0 20

3 20

3a 2
3 0 0 1

3
1

3 1 10
3 5

Since 2 3 3 2 3
3 3 3min{ , }M M M      , then 1x enter the basic variable.

Since
28

min{ , 20,5} 5
5

 , then 3a leave the basic variable.

1x 2x 1s 2e 2a 3a RHS Ratio
z 0 0 0 1

2
2 1

2
M  2 3

2
M  25

1s 0 0 1 1
8 1

8 5
8 1

4

2x 0 1 0 1
2 1

2
1

2 5

1x 1 0 0 1
2

1
2 3

2 5
Hence, 1 25, 5, 25x x z  

The Two-Phase Simplex Method
Case 1:
Example: min 1 22 3z x x 

s.t. 1 1
2 41 2 4x x 

1 2

1 2

1 2

3 36
10

, 0

x x
x x

x x

 
 



Phase I problem:
min 2 3w a a 
s.t. 1 1

2 41 2 1 4x x s  

1 2 2 2

1 2 3

1 2 1 2 2 3

3 36
10

, , , , , 0

x x e a
x x a

x x s e a a

   
  



1x 2x 1s 2e 2a 3a RHS Ratio
w 0 0 0 0 1 1 0

1s 1
2

1
4 1 0 0 0 4

2a 1 3 0 -1 1 0 36

3a 1 1 0 0 0 1 10

The initial table is

1x 2x 1s 2e 2a 3a RHS Ratio
w -2 -4 0 1 0 0 -46

1s 1
2

1
4 1 0 0 0 4 16

2a 1 3 0 -1 1 0 36 12

3a 1 1 0 0 0 1 10 10



Operations Research

17 17

Since min{ 2, 4} 4   , then 2x enter the basic variable.
Since min{16,12,10} 10 , then 3a leave the basic variable.

1x 2x 1s 2e 2a 3a RHS Ratio
w 2 0 0 1 0 4 -6

1s 1
4 0 1 0 0 1

4 3
2

2a -2 0 0 -1 1 -3 6

2x 1 1 0 0 0 1 10

Since 0w  , then the origin LP must have no feasible solution.
Case II:

min 1 22 3z x x 
s.t. 1 1

2 41 2 4x x 

1 2

1 2

1 2

3 20

10
, 0

x x

x x
x x

 
 



Phase I problem:
min 2 3w a a 
s.t. 1 1

2 41 2 1 4x x s  

1 2 2 2

1 2 3

1 2 1 2 2 3

3 20
10

, , , , , 0

x x e a
x x a

x x s e a a

   
  



1x 2x 1s 2e 2a 3a RHS Ratio
w 0 0 0 0 1 1 0

1s 1
2

1
4 1 0 0 0 4

2a 1 3 0 -1 1 0 20

3a 1 1 0 0 0 1 10

The initial table is

1x 2x 1s 2e 2a 3a RHS Ratio
w -2 -4 0 1 0 0 -30

1s 1
2

1
4 1 0 0 0 4 16

2a 1 3 0 -1 1 0 20 20/3

3a 1 1 0 0 0 1 10 10
Since min{ 2, 4} 4   , then 2x enter the basic variable.

Since
20 20

min{16, ,10}
3 3

 2a leave the basic variable

1x 2x 1s 2e 2a 3a RHS Ratio
w - 2

3 0 0 1
3 4

3 0 10
3

1s 5
12 0 1 1

12
1
12 0 7

3 28/5

2x 1
3 1 0 1

3 1
3 0 20

3 20

3a 2
3 0 0 1

3
1

3 1 10
3 5
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Since
2 1 2

min{ , }
3 3 3

   , then 1x enter the basic variable.

Since
28

min{ , 20,5} 5
5

 , then 3a leave the basic variable.

1x 2x 1s 2e 2a 3a RHS Ratio
w 0 0 0 1 1 0 0

1s 0 0 1 1
8 1

8
5

8 1
4

2x 0 1 0 1
2 1

2
1

2 5

1x 1 0 0 1
2

1
2 3

2 5

Phase II:
min 1 22 3z x x 
s.t. 1 1

8 41 2s e 
1

22 2

1
21 2

1 2 1 2

5

5
, , , 0

x e

x e
x x s e

 
 



1x 2x 1s 2e RHS Ratio
z 2 3 0 0 0

1s 0 0 1 1
8 1

4

2x 0 1 0 1
2 5

1x 1 0 0 1
2 5

The initial table is

1x 2x 1s 2e RHS Ratio
z 0 0 0 1

2 -25

1s 0 0 1 1
8 1

4

2x 0 1 0 1
2 5

1x 1 0 0 1
2 5

Hence, 1 2 5, 25x x z  

Case III:
max 1 2 5 640 10 7 14z x x x x   
s.t. 1 2 52 0x x x  

1 2 5

1 3 5 6

2 3 4 5 6

2 2 0

3

2 2 4

0( 1, 2,3,4,5,6)i

x x x

x x x x

x x x x x

x i

   

   

    

 
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Convert the standard form:
max 1 2 5 640 10 7 14z x x x x   
s.t. 1 2 5 12 0x x x a   

1 2 5 2

1 3 5 6 3

2 3 4 5 6

2 2 0

3

2 2 4

0( 1, 2,3,4,5,6), 0( 1,2,3)i i

x x x a

x x x x a

x x x x x

x i a i

    

    

    

   

Phase I:
min 1 2 3w a a a  
s.t. 1 2 5 12 0x x x a   

1 2 5 2

1 3 5 6 3

2 3 4 5 6

2 2 0

3

2 2 4

0( 1, 2,3,4,5,6), 0( 1,2,3)i i

x x x a

x x x x a

x x x x x

x i a i

    

    

    

   

Table Form

1x 2x 3x 4x 5x 6x 1a 2a 3a RHS Ratio
w 0 0 0 0 0 0 1 1 1 0

1a 1 -1 0 0 2 0 1 0 0 0

2a -2 1 0 0 -2 0 0 1 0 0

3a 1 0 1 0 1 -1 0 0 1 3

4x 0 2 1 1 2 1 0 0 0 4

The initial table is

1x 2x 3x 4x 5x 6x 1a 2a 3a RHS Ratio
w 0 0 -1 0 -1 1 0 0 0 -3

1a 1 -1 0 0 2 0 1 0 0 0 *

2a -2 1 0 0 -2 0 0 1 0 0 *

3a 1 0 1 0 1 -1 0 0 1 3 3

4x 0 2 1 1 2 1 0 0 0 4 4

Since min{ 1, 1} 1   . Then 3x enter the basic variable.

Since min{*,*,3,4} 3 , then 3a leave the basic variable.

1x 2x 3x 4x 5x 6x 1a 2a 3a RHS Ratio
w 1 0 0 0 0 0 0 0 1 0

1a 1 -1 0 0 2 0 1 0 0 0

2a -2 1 0 0 -2 0 0 1 0 0

3x 1 0 1 0 1 -1 0 0 1 3

4x -1 2 0 1 1 2 0 0 -1 1
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Phase II:
max 2 5 610 7 14z x x x  
s.t. 2 5 12 0x x a   

2 5 2

3 5 6

2 4 5 6

2 0

3

2 2 1

0( 2,3,4,5,6), 0( 1,2)i i

x x a

x x x

x x x x

x i a i

  

  

   

   

Table Form

2x 3x 4x 5x 6x 1a 2a RHS Ratio
z -10 0 0 -7 -14 0 0 0

1a -1 0 0 2 0 1 0 0 *

2a 1 0 0 -2 0 0 1 0 *

3x 0 1 0 1 -1 0 0 3 *

4x 2 0 1 1 2 0 0 1 0.5
Since min{ 10, 7, 14} 14    , then 6x enter the basic variable.
Since min{*,*,*,0.5} 0.5 , then 4x leave the basic variable.

2x 3x 4x 5x 6x 1a 2a RHS Ratio
z 4 0 7 0 0 0 0 7

1a 0 0 0 2 0 1 0 0

2a 1 0 0 0 0 0 1 0

3x 1 1 0.5 1.5 0 0 0 3.5

6x 1 0 0.5 0.5 1 0 0 0.5
Hence, 3 63.5, 0.5, 7x x z   .

Unrestricted-in-Sign Variables
max 1 230 4z x x 
s.t. 1 25 30x x 

1

1 2

5

0, urs

x

x x





Convert to
max 1 2 230 4 4z x x x   
s.t. 1 2 25 30x x x   

1

1 2 2

5

, , 0

x

x x x




Convert to the standard form:
max 1 2 230 4 4 0z x x x    
s.t. 1 2 2 15 30x x x s    

1 2

1 2 2 1 2

5

, , , , 0

x s

x x x s s

 
 
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Table Form

1x 2x 2x 1s 2s RHS Ratio
z -30 4 -4 0 0 0

1s 5 -1 1 1 0 30 6

2s 1 0 0 0 1 5 5
Since min{ 30, 4} 30   , then 1x enter the basic variable.
Since min{6,5} 5 , then 2s leave the basic variable.

1x 2x 2x 1s 2s RHS Ratio
z 0 4 -4 0 30 150

1s 0 -1 1 1 -5 5 5

1x 1 0 0 0 1 5 *
Since min{ 4} 4  , then 2xenter the basic variable.
Since min{5,*} 5 , then 1s leave the basic variable.

1x 2x 2x 1s 2s RHS Ratio
z 0 0 0 4 10 170

2x 0 -1 1 1 -5 5

1x 1 0 0 0 1 5
Hence, 1 2 2 25, 0 5 5, 170x x x x z        .

The Revised Simplex Method(修正單形法)

Assume that we are solving a max problem that has been prepared for solution by the Big-M
method and that at this point, the LP has m constraints and n variables. Although some of these
variables may be slack, surplus, or artificial, we choose to label them 1 2, , , nx x x . Then the LP

may be written
max 1 1 2 2 n nz c x c x c x   
s.t. 11 1 12 2 1 1n na x a x a x b   

21 1 22 2 2 2

1 1 2 2

0( 1, 2, , )

n n

m m mn n m

i

a x a x a x b

a x a x a x b

x i n

   

   

 


  




Matrix Form:

max Tz C X
s.t. AX b

0X 

We can be written as

max T T
B B N Nz C X C X 

s.t. B NBX NX b 
, 0B NX X 
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where

T
BC is the 1 m row vector whose elements are the coefficients of the basic variables.

T
NC is the 1 ( )n m  row vector whose elements are the coefficients of the nonbasic

variables.
The m m matrix B is the matrix whose thj column is the column for basic variables.
N is the ( )m n m  matrix whose columns are the columns for the nonbasic variables.

BX is the 1m vector listing the basic variables.

NX is the ( ) 1n m  vector listing the nonbasic variables.

Example: Consider the max LP
max 1 2 3 1 2 360 30 20 0 0 0z x x x s s s     
s.t. 1 2 3 18 6 48x x x s   

1 2 3 2

1 2 3 3

1 2 3 1 2 3

4 2 1.5 20

2 1.5 0.5 8

, , , , , 0

x x x s

x x x s

x x x s s s

   

   



Suppose that
1

3

1

B

s
X x

x

 
  
  

, then

max    
1 2

3 2

1 3

0 20 60 30 0 0T T
B B N N

s x
z C X C X x s

x s

   
         
      

s.t.
1 2

3 2

1 3

1 1 8 6 0 0 48
0 1.5 4 2 1 0 20
0 0.5 2 1.5 0 1 8

B N

s x
BX NX b x s

x s

       
                  
              

1 2 3 1 2 3, 0 , , , , , 0B NX X x x x s s s  

Assume that the LP problem is

max T T
B B N Nz C X C X 

s.t. B NBX NX b 
, 0B NX X 

Then, the current tableau is

BX NX RHS
z T

BC T
NC

0

BX B N b

BX NX RHS
z 0 1T T

B NC B N C  1T
BC B b

BX I 1B N 1B b


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Algorithm of the revised simplex method:

1. Compute 1T T
N B N jC C B N C c     . If 0jc  , j , then the LP problem is optimal, stop;

otherwise, choose q such that min{ | 0}q j jc c c  , then qx should enter the basic variable.

2. Compute 1
q qa B a and 1b B b . Choose p such that min | 0p i

iq
pq iq

b b
a

a a

    
  

, then px

should leave the basic variable.
3. Update , , ,B NX X B N , go to step 1.

Example: Consider the LP
max 1 23 5z x x 
s.t. 1 4x 

2

1 2

1 2

2 12

3 2 18
, 0

x

x x
x x


 


Then, the standard form is
max 1 23 5z x x 
s.t. 1 1 4x s 

2 2

1 2 3

1 2 1 2 3

2 12
3 2 18

, , , , 0

x s
x x s

x x s s s

 
  



Iteration 0

Since
1

2

3

B

s
X s

s





and 1

2
N

x
X

x
 

 
 

, then 1

1 0 0
0 1 0
0 0 1

B B

 
   
  

.

Since     1

1 0 0 1 0
0 0 0 0 1 0 0 2 3 5 3 5

0 0 1 3 2

T T T
N B NC C B N C

  
         
    

, then 2x enter the

basic variable.

Since 1
2 2

1 0 0 0 0
0 1 0 2 2
0 0 1 2 2

a B a

  
      
    

, 1

1 0 0 4 4
0 1 0 12 12
0 0 1 18 18

b B b

    
          
        

, and

12 18
min , , 6

2 2
   
 

, then 2s leave the basic variable.

Iteration 1
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Since
1

2

3

B

s
X x

s

 
  
  

and 1

2
N

x
X

s





, then
1 0 0
0 2 0
0 2 1

B
 
  
  

and 1

1 0 0
1

0 0
2

0 1 1

B

 
 
 
 
  

.

Since    1

1 0 0
1 0

1 5
0 5 0 0 0 0 1 3 0 3

2 2
3 00 1 1

T T T
N B NC C B N C

 
                   

, then 1x enter the

basic variable.

Since 1
1 1

1 0 0
1 0

1
0 0 0 0

2
3 30 1 1

a B a

 
  
      
    

, 1

1 0 0
4 4

1
0 0 12 6

2
18 60 1 1

b B b

 
   
        
      

, and

6
min , , 3

2
   
 

, then 3s leave the basic variable.

Iteration 2

Since
1

2

1

B

s
X x

x

 
  
  

and 2

3
N

s
X

s





, then
1 0 1
0 2 0
0 2 3

B
 
  
  

and 1

1 1
1

3 3
1

0 0
2
1 1

0
3 3

B

  
 
  
 
 
  

.

Since    1

1 1
1

3 3 0 0
1 3

0 5 3 0 0 1 0 0 0 1
2 2

0 11 1
0

3 3

T T T
N B NC C B N C

  
  

               
 
  

, then

1
1

2

1

1 1
1

3 3 4 2
1

0 0 12 6
2

18 21 1
0

3 3

B

s
X x B b

x



  
     
             
         

 
  

,and  1
optimal

2
0 5 3 6 36

2

T T
B B Bz C B b C X


   


.

Product Form of the Inverse

Consider a basis (matrix) B composed of the columns
1 2
, , ,

mB B Ba a a and suppose that 1B is

known.
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1 2 mB B BB a a a  

Suppose that the nonbasic column ka replaces
rBa , resulting in the new basis (matrix) newB .

1 2 1 1new r r mB B B k B BB a a a a a a
 

   

Noting that k ka Ba since 1
k ka B a and

iB ia Be where ie is a vector of zeros except for 1

at the thi position, we have

 
 

1 2 1 1new

1 2 1 1

1 2 1 1

r r mB B B k B B

r k r m

r k r m

B a a a a a a

Be Be Be Ba Be Be

B e e e a e e

BT

 

 

 

  






 
 
 

where T is the identity with the thr column replaced by ka , i.e.,

1

2

1 0 0 0 0
0 1 0 0 0

0 0 0 0 0

0 0 0 0 1

k

k

rk

mk

a
a

T
a

a

 
 
 
 

 
 
 
 
  

 
 

     
 

     
 

Since

1

2

1

2

1 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0 0 1

1 0 0 0 0 0
1 0 0 0 0

0 1 0 0 0 0
0 1 0 0 0

~ 1
0 0 0 0 00 0 0 1 0 0

0 0 0 0 1

k

k

rk

mk

k

k

rk

mk

a
a

a

a

a
a

a

a

 
 
 
 
 
 
 
 
  

   
   

           
   

           
   

  
  

          
  

     
 

0 0 0 0 0 1

 
 
 
 
 
 
 
 
 
  

     
 

thr column

thr row
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1

2

1 0 0 0 0

1 0 0 0 0 0
0 1 0 0 0

0 1 0 0 0 0

~
0 0 0 1 0 0 1

0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1

k

rk

k

rk

rk

mk

rk

a
a

a
a

a

a
a

  
 
 

 
 
 
 
 
 
 
 
 

 
  

 

   
 

           
   

     
      

 

,then the inverse of T is

1

2

1

1 0 0 0 0

0 1 0 0 0

1
0 0 0 0 0

0 0 0 0 1

k

rk

k

rk

rk

mk

rk

a
a

a
a

T

a

a
a



  
 
 

 
 
 

 
 
 
 
 
 

 
  

 

 

     

 

     

 

Therefore, 1 1 1 1 1
new ( )B BT T B EB       .

Example: Consider the LP
max 1 23 5z x x 
s.t. 1 1 4x s 

2 2

1 2 3

1 2 1 2 3

2 12
3 2 18

, , , , 0

x s
x x s

x x s s s

 
  



1. If
1

2

3

B

s
X s

s





, then 1
1 1

1 0 0
0 1 0
0 0 1

B B

 
   
  

.

2. If
1

2

3

B

s
X x

s

 
  
  

, i.e., 2x replace 2s , then
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1
2 1 2

0
2
2

a B a


 


1

1 0 0
1

0 0
2

0 1 1

E

 
 
 
 
  

1 1
2 1 1

1 0 0
1

0 0
2

0 1 1

B E B 

 
 
  
 
  

3. If
1

2

1

B

s
X x

x

 
  
  

, i.e., 1x replace 3s , then

1
1 2 1

1 0 0
1 1

1
0 0 0 0

2
3 30 1 1

a B a

 
  
      
    

2

1
1 0

3
0 1 0

1
0 0

3

E

  
 

 
 
 
 

1 1
3 2 2

1 1
1 11 0 01 0 3 3
3

1 1
0 1 0 0 0 0 0

2 2
1 0 1 1 1 10 0 03 3 3

B E B 

                                

Example: The LP is
max 1 2 33z x x x  
s.t. 1 2 3 6x x x  

1 3

2 3

1 2 3

2 4

2

, , 0

x x

x x

x x x

 

 


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Then, the standard form is
max 1 2 33z x x x  
s.t. 1 2 3 1 6x x x s   

1 3 2

2 3 3

1 2 3 1 2 3

2 4

2

, , , , , 0

x x s

x x s

x x x s s s

  

  



Iteration 0

Since
1

2

3

B

s
X s

s





and
1

2

3

N

x
X x

x

 
  
  

, then 1
1 1

1 0 0
0 1 0
0 0 1

B B

 
   
  

.

Since     1

1 0 0 1 1 1
0 0 0 0 1 0 2 0 1 3 1 1 3 1 1

0 0 1 0 1 1

T T T
N B NC C B N C

  
           
    

, then 1x

enter the basic variable.

Since 1
1 1 1

1 0 0 1 1
0 1 0 2 2
0 0 1 0 0

a B a

  
      
    

, 1

1 0 0 6 6
0 1 0 4 4
0 0 1 2 2

b B b

  
      
    

, and
6 4

min , , 2
1 2

  
 

,

then 2s leave the basic variable.

Iteration 1

Since
1

1

3

B

s
X x

s





and
2

3

2

N

x
X x

s

 
  
  

, then

1
1 0

2
1

0 0
2

0 0 1

E

  
 
  
 
 
  

and 1 1
2 1

1
1 0

2
1

0 0
2

0 0 1

B EB 

  
 
   
 
 
  

.

Since    1

1
1 0

2 1 1 0
1 5 3

0 3 0 0 0 0 1 1 1 1 0 1
2 2 2

1 1 00 0 1

T T T
N B NC C B N C

  
  

                 
 
  

, then

3x enter the basic variable.
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Since 1
3 2 3

1 3
1 0

2 21
1 1

0 0 1
2 2

10 0 1 1

a B a

      
    
           
     

   
      

, 1
2

1
1 0

2 6 4
1

0 0 4 2
2

2 20 0 1

b B b

  
  
      
   

 
  

, and

4 2
min , , 2

3 1
2

 
 

  
 
 

, then 3s leave the basic variable.

Iteration 2

Since
1

1

3

B

s
X x

x

 
  
  

and
2

2

3

N

x
X s

s

 
  
  

, then

3
1 0

2
1

0 1
2

0 0 1

E

  
 
  
 
 
  

and

1 1
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The LINDO Computer Package
1. Setup the LINDO package
2. Execute Lindow32
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Appendix 1 (Proof of Fundamental Theorem of Linear Programming)
Proof of (1):

Denote the columns of A by 1 2, , , na a a . Suppose  1 2
T

nX x x x  is a feasible

solution. Then, in terms of the columns of A , this solution satisfies:

1 1 2 2 n na x a x a x b   
Assume that exactly p of the variables ix are greater than zero, and for convenience,
that they are first p variables. Thus,

1 1 2 2 p pa x a x a x b   

There are two cases, corresponding as to whether the set 1 2, , , pa a a is linearly

independent or linearly dependent.

CASE 1: Assume 1 2, , , pa a a is linearly independent. Then p m .

If p m , the solution is basic and the proof is complete.
If p m , then, since A has rank m , m p vectors can be found from the remaining
n p vectors so that the resulting set of m vectors is linearly independent. Assigning the
value zero to the corresponding m p variables yields a (degenerate) basic feasible

solution.

CASE 2: Assume 1 2, , , pa a a is linearly dependent. Then there is a nontrivial linear

combination of these vectors that is zero. Thus, there are constants 1 2, , , py y y , at least

one of which can be assumed to be positive, such that

1 1 2 2 0p pa y a y a y   

Multiplying this equation by a scalar  and subtracting it from 1 1 2 2 p pa x a x a x b    ,

we obtain

1 1 1 2 2 2( ) ( ) ( )p p pa x y a x y a x y b        

This equation holds for every , and for each  the components i ix y correspond to
a solution of the linear equalities—although they may violate 0i ix y  . Denoting

1 2 0 0 0
T

py y y y    , we see that for any 

X Y
is a solution to the equalities. For 0 , this reduces to the origin feasible solution. As 
is increased from zero, the various components increase, decrease, or remain constant,
depending upon whether the corresponding iy is negative, positive, or zero. Since we
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assume at least one iy is positive, at least one component will decrease as  is increased.

Increase  to the first point where one or more components become zero. Specifically, set

min : 0i
i

i

x
y

y


 
  

 

For this value of  the solution given by x y is feasible and has at most 1p

positive variables. Repeating this process if necessary, we can eliminate positive variables
until we have a feasible solution with corresponding columns that are linearly independent.
AT that point CASE 1 applies.

Proof of (2):

Let  1 2
T

nX x x x  be an optimal feasible solution and, as in the proof of (1)

above, suppose there are exactly p positive variables 1 2, , , pa a a . Again there are two

cases; and CASE 1, corresponding to linear independence, is exactly the same as before.
CASE2 also goes exactly the same before, but it must be shown that for any  the
solution X Y is optimal. To show this, note that the value of the solution X Y is

T TC X C Y
For  sufficiently small in magnitude, X Y is a feasible solution for positive or
negative values of . Thus, we conclude that 0TC Y  . For, if 0TC y  , an  of small

magnitude and proper sign could be determined so as to render T TC X C Y smaller than
TC X while maintaining feasibility. This would violate the assumption of optimality of

X and hence we must have 0TC Y  .
Having established that the new feasible solution with fewer positive components is also
optimal, the remainder of the proof may be completed exactly as in part (1).
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Appendix 2 (Proof of Equivalence of Extreme Points and Basic Feasible Solution)

Suppose first that  1 2 0 0 0
T

mX x x x   is a basic feasible solution to

AX b and 0X  .. Then

1 1 2 2 m ma x a x a x b   
where 1 2, , , ma a a , the first m columns of A , are linearly independent. Suppose that X

could be expressed as a convex combination of two other points in K ; say,
(1 )X Y Z    , 0 1  , Y Z . Since all components of , ,X Y Z are nonnegative

and since 0 1  , it follows immediately that the last n m components of Y and Z
are zero. Thus, in particular, we have

1 1 2 2 m ma y a y a y b   
and

1 1 2 2 m ma z a z a z b   
Since the vectors 1 2, , , ma a a are linearly independent, it follows that X Y Z  and

hence X is an extreme point of K .
Conversely, assume that X is an extreme point of K . Let us assume that the nonzero
components of X are the first k components. Then

1 1 2 2 m ma x a x a x b   
with 0ix  , 1,2, ,i k  . To show that X is a basic feasible solution it must be shown
that the vectors 1 2, , , ma a a are linearly independent. We do this by contradiction. Suppose
that 1 2, , , ma a a are linearly dependent. Then there is a nontrivial linear combination that is

zero:

1 1 2 2 0k ka y a y a y   

Define the n -vector  1 2 0 0 0kY y y y   . Since 0ix  , , it is possible to

select  such that
0X Y  and 0X Y 

We then have    1 1
2 2

X X Y X Y     which expresses X as a convex combination

of two distinct vectors in K . This cannot occur, since X is an extreme point of K . Thus,

1 2, , , ma a a are linearly independent and X is a basic feasible solution.


