Operations Research
The Linear Programming-the Simplex Algorithm

Linear Programming (LP)(# {4 #L4]) is a tool for solving optimization problems. In 1947,
Geor ge Dantzig developed an efficient method, the ssmplex algorithm(¥ =5, for solving linear
programming problems. Since the development of the simplex algorithm, LP has been used to solve
optimization problems in industries are diverse as banking, education, forestry, petroleum, and
trucking. In a survey of Fortune 500 firms, 85% of the respondents said they had used LP. As a
measure of the importance of LP in OR, approximately 70% of this book will be devoted to LP and
related optimization techniques.

We devote to a discussion of the simplex algorithm, which is used to solve even very large
LPs. In many industrial applications, the smplex algorithm is used to solve LPs with thousands of
constraints and variables. We should explain how the ssmplex agorithm can be used to find optimal
solutions to LPs., and detail how two state-of-the-art computer packages (LINDO) can be used to
solve LPs.

Type 1: Graphical Solution(f#:%)
Example:

The WYNDOR GLASS CO. produces high-quality glass products, including windows and
glass doors. It has three plants. Aluminum frames and hardware are made in Plant 1, wood frame
are madder in Plant 2, and Plant 3 produces the glass and assembles the products.

Because of declining earnings, top management has decided to revamp the company’s product
line. Unprofitable products are being discontinued, releasing production capacity to launch two new
products having large sales potential:

Product 1: An 8-foot glass door with auminum framing.

Product 2: A 4x6 foot double-hung wood-framed window.

Table Data for the Wyndor Glass Co. problem

Production Time per Batch, Hours
Product Production Time Available
Plant 1 2 per Week, Hours
1 1 0 4
2 0 2 12
3 3 2 18
Profit per batch $3000 $5000

Solution: We define
X, = number of batches of product 1 produced per week
X, = number of batches of product 2 produced per week
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The solution indicates that the Wyndor Glass Co. should produce products 1 and 2 at the rate of 2
batches per week and 6 batches per week, respectively, with a resulting total profit of $36000 per

week.

Terminology for Solutions of the M odel

1.
2.

A feasible solution(+ = %) isasolution for which al the constraints are satisfied.
Aninfeasible solution(# # {7 %) isasolution for which at least one constraint is
violated.

Thefeasibleregion(¥ {7 f# % #*) isthe collection of all feasible solutions.

An optimal solution(#- i f%) is afeasible solution that has the most favorable value of
the objective function.

A corner-point feasible (CPF; basic feasible)(# # ¥ {7 f#) solution is asolution that
lies a acorner of the feasible region.

Relationship between optimal solutions and CPF solutions

Consider any linear programming problem with feasible solutions and a bounded
feasible region. The problem must posses CPF solutions and at least one optimal
solution. Furthermore, the best CPF solution must be an optimal solution. Thus, if a
problem has exactly one optimal solution, it must be a CPF solution. If the problem
has multiple optimal solutions, at least two must be CPF solution.

The solution for Linear Programming:

1.

Uniquely optimal solution(r& - %)

2. Multiple optimal solutions(i *2 % % f%)
3.
4. Nofeasible solution( ¥ {7 %)

Unbounded( 7 )

Assumptions of Linear Programming:

1.

Proportionality(+ v &)%) —2t4m ++ F.2](Nonlinear Programming)

2. Additivity(¥ 4c48) — b4 4] (Nonlinear Programming)
3.
4. Certainty(#£ 1) — %5 #i-5% (Stochastic Model)

Divisibility(¥ & {£) — & #.3](Integer Programming)
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Type 2: Simplex method (& #5/2)
Convert an LPto Standard Form
We have seen that an LP can have both equality and inequality constraints. It also can have
variables that are require to be nonnegative as well as those allowed to be unrestricted in sign.
Before the simplex algorithm can be used to solve an LP, the LP must be converted into an
equivaent problem in which all constraints are equation and all variables are nonnegative. An
LPinthisformissaid to bein standard form.
Standard Form
max(or min) z=cX, +C,X, +---+C X,
st. X +apX +oo 8y, X, =0y
By X + 8%, o+ By X, = by

B Xy + Xy oo+ 8 X, =1,

X 20(=212,-,n)
Example Leather Limited

Leather Limited manufacturers two types of belts(*& = ): the deluxe(% % 7)model and the
regular model. Each type requires 1 sq yd of leather(& & ). A regular belt requires 1 hour of skilled
labor, and a deluxe belt requires 2 hours. Each week, 40 sq yd of leather and 60 hours of skilled
labor are available. Each regular belt contributes $3 to profit and each deluxe belt, $4. If we define
X, = number of deluxe belts produced weekly

X, = number of regular belts produced weekly

AnLPis
max Z=4x, +3X,
st. X + X, <40
2% + X, <60
X, % >0
A standard form of LPis
max z=4x +3X,
st. X+X+s =40
2% +X%X, +S,=60
%1%, 9,8, 20
Example
AnLPis
min z=50x, + 20X, + 30x, + 80x,
st. 400x, + 200x, +150x, + 500x%, > 500
33X +2x,>6
2X + 2%, + 4%, +4, 210
2% +4X, +%,+5,>8
Xy %o, Xg5 % 2 0
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A standard form of LPis

min z=50x, + 20X, + 30x, + 80x,
st. 400x, + 200x, +150x, +500x, —e =500
3X +2X,—€,=6

2X + 2%, + 4%, +4,—e, =10
2X +4X%,+%,+5,—¢,=8
X, %01 %, %,,6,65,65,6, 20

Preview of the Simplex Algorithm
max Z=CX +CX, +--+C X
st. X 8% o+ 8, X, =hy
By X + 8%, o+ By X, = by

QX+ A% o aX, =h,

X 20(=212,-,n)
Matrix Form:
max z=C"X
st. =b
X>0
where
G &, &, - &y, X by
e P el P e I R
Cn aml am2 amn Xn bm

Basic Propertiesof Liner Programming
Consider the system of equalities
AX =b
where X isan n-vector, b an m-vector, and A isan mxn matrix. Suppose that from the
n columnsof A weseect aset of m linearly independent columns (such a set exists if the rank
of A is m). For notationa simplicity assume that we select the first m columns of A and
denote the mxm matrix determined by these columns by B. The matrix B is then nonsingular

and we may uniquely solve the equation
BX, =b

for the mvector X;. By putting X :(XB,G) (that is, setting the first m components of X

equal to those of X; and the remaining components equal to zero), we obtain a solution to
AX =Db. Thisleadsto the following definition.
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Definition of Basic Variable
Giventheset of m simultaneous linear equationsin n unknowns AX =D, let B be
any nonsingular mxm submatrix made up of columns of A. Then, if adl m-n
components of X not associated with columnsof B are set equal to zero, the solution
to the resulting set of equationsis said to be abasic solution(# f#) to (1) with respect to
the basis B. The components of X associated with columns of B are called basic
variables(BV, # % #), otherwise are called nonbasic variables(NBV, - % #k).
To find a basic solution to AX =b, we choose a set of n—m variables (the nonbasic variables,
or NBV(2£4 % #k)) and set each of these variables equal to 0. Then we solve for the values of the
remaining m variables (the basic variables, BV) that satisfy AX =b.
Example:
X +% =3
—X X =-1
If NBV ={x.}, then BV ={x, x,} . We obtain the values of the basic variables by setting
X, =0 and solving
X +X =3
-X,=-1
Wefindthat x =2,x, =1.
Definition of Feasible and Basic Feasible Solution
A vector X satisfying AX=b and X >0 is said to the feasible solution(+ { ji#)
for these constraints.
A feasible solution to the constraints AX =b and X >0 that is also basic solution is
said to be abasic feasible solution(bfs;, & &+ {7 f#).
Corresponding to alinear program in standard form

max(or min) z=C™X
st. AX =Db
X=>0

a feasible solution to the constraints that achieves the maximum (or minimum) value of the
objective function subject to those constraints is said to be an optimal feasible solution. If this
solution isbasic, it isan optimal basic feasible solution.
Theorem (Fundamental Theorem of Linear Programming)
Given alinear programming in standard formwhere A isan mxn matrix of rank m.
(2) If thereis afeasible solution, there is a basic feasible solution.
(2) If thereis an optimal feasible solution, thereis an optimal basic feasible solution.
Proof: (See Appendix 1)
Remark:
This theorem reduces the task of solving alinear programming problem to that of searching
over basic feasible solutions. Since for a problem having n variablesand m constraints
there are at most
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n_ n!
™ mi(n—m)!
basic solutions, there are only afinite number of possibilities.
Definition of Convex

A set C in E" issaid to be convex(dh # &) if for every x,x,€C and every red

number o, O<a <1,thepoint ax +(@-a)x, €C.
Definition of Half Space

Let a be a nonzero vector in E" and let ¢ a rea number. Corresponding to the
hyperplane(¥ L &) H ={x:a'x=c} arethe positive and negative closed half spaces

H, ={x:a"x>¢d}
H ={x:a'x<d

and the positive and negative open half spaces

H, ={x:a"x>¢}
H ={x:a"x<d

Definition of Polytope
A set which can be expressed as the intersection of afinite number of closed half spaces
issaid to be a convex polytope.
Definition of Extreme Point
A point X inaconvex set C issadto be an extreme point(#&2t) of C if there are
no two distinct points x, and X, in C such that x=ax +(1-a)x, for some «,
O<a<l1.
Theorem (Equivalence of Extreme Points and Basic Feasible Solution)
Let A be an mxn matrix of rank m and b an m-vector. Let K be the convex
polytope consisting of all n-vectors X satisfying
AX =b
X>0
Avector X isanextremepoint of K if andonlyif X isabasicfeasible solution to
AX=Db and X>0.
Proof: (See the Appendix 2)
Corollary:
If the convex K corresponding to AX =b and X >0 is nonempty, it has at least
one extreme point.
Corollary:
If there is a finite optimal solution to a linear programming problem, there is a finite
optimal solution which is an extreme point of the constraint set.
Corollary:
The constraint set K correspondingto AX =b and X >0 possesses a most afinite
6 6
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number of extreme points.
Proof:
There are obviously only a finite of basic solutions obtained by selecting m basis vectors
fromthe n columnsof A.Theextremepointsof K areasubset of these basic solutions.

Example:
max Z=4x, +3X, max Z=4x, +3X,
st. X +X, <40 st. X+X+S =40
2% + X, <60 2% +X%X, +S,=60
X, %, 20 X, %,8,S >0
Basic Nonbasic Variables Basic Feasible Solution Corresponds to Corner Point
Variables
X5 % S:S, X =%=20 E
XS %1S, % =30,5 =10 C
XS, %S ¥ = 40,8, =-20 Not a bfs
%S XS, X, = 60,5 =-20 Not abfs
%15, X8 X, =40,s,=20 B
S5, X, % s =40,s, =60 F

Adjacent Basic Feasible Solutions
For any LPwith m constraints, two basic feasible solutions are said to be adjacent(4p
#R) if their sets of basic variableshave m—1 basic variablesin common.

Example:
max Z=4x, +3X,
st. X +X%X +s =40
2% + %, +s, =60
%,%,8,8, 20

The basic feasible solutions (0,0,40,60), (30,0,10,0) are adjacent.
The basic feasible solutions (30,0,10,0), (20,20,0,0) are adjacent.
The basic feasible solutions (20,20,0,0), (0,40,20,0) are adjacent.
The basic feasible solutions (0,0,40,60), (20,20,0,0) are not adjacent.

The Simplex Algorithm
Step 1. Convert the LPto standard form.
max Z=CX +CX, +--+C X,
sit. X +apX, + X, =h
QX X+ 8y X, = by

QX+ A% o X, =h,
X 20(=212,,n)

7 7



Step 2: Obtain abfs (if possible) from the standard form.

Step 3: Determine whether the current bfsis optimal.

If the €, >0, then current basic feasible solution is optimal, stop.
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Step 4: If the current bfs is not optimal, then determine which nonbasic variable should become a
basic variable and which basic variable should become a nonbasic variable to find a new bfs

with abetter objective function value.

Select x, such that C,=min{C, |C, <0,x; isanonbasicvariable} to determine which

nonbasic variable is to become basic.

Calculuate the ratio l_)—' for >0, i=12,---,m. If no g >0, stop; the problem is

J

unbounded. Otherwise, select p astheindex i corresponding to the minimum ratio.
Step 5: Use EROs to find the new bfs with the better objective function value. Go back to step 3.

Pivot onthe pqgth element, updating al rows including the last.
z=60x +30x, + 20X,

Example: max

s.t. 8%, +6X, + X, <48
4x, + 2%, +1.5%, < 20
2% +1.5%, +0.5%, <8
X, <5
X1 X, % 2 0
Convert the standard form:
max z—-60x, —30x, —20%, =0
st. 8X, +6X, +X,+5 =48

4x, + 2%, +1.5%,+s, =20
2% +1.5%, +0.5%,+5s, =8

X,+S,=5

X, %%, 8,8, 8,8, 20

Use the Tabular Form:

variable X 0 X3 S S S S, RHS Ratio
z -60 -30 -20 0 0 0 0 0

S 8 6 1 1 0 0 0 48 48/8=6
S 4 2 15 0 1 0 0 20 20/4=5
S 2 1.5 0.5 0 0 1 0 8 4/2=4
S 0 1 0 0 0 0 1 5 *

Since min{—60,-30,-20} =-60, then X enter the basic variable.
Since min{6,5,4,*} =4, then s, leavethe basic variable
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variable X X, X, S S S, S, RHS Ratio

z 0 15 -5 0 0 30 0 240

S 0 0 -1 1 0 -4 0 16 *

S 0 -1 0.5 0 1 -2 0 4/0.5=8
X 1 0.75 0.25 0 0 0.5 0 4/0.25=16
S, 0 1 0 0 0 0 1 *

Since min{-5 =-5, then X, enter the basic variable.

Since min{*,8,16,*} =8, then s, leavethebasic variable

variable X X, X, S S S S, RHS Ratio
z 0 5 0 0 10 10 0 280

S 0 -2 0 1 2 -8 0 24

X3 0 -2 1 0 2 -4 0 8

X 1 125 0 0 -0.5 15 0 2

S, 0 1 0 0 0 0 1 5

Hence, x, =2,X,=0,%x=8,%,=0,z=280.

Example: (Using the Simplex Algorithm to Solve Minimization Problems)
min Z=2X —3X,

St X+X <4
X=X <6
X, % 20
Convert the standard form:
max -Z+2%—-3%,=0
St X+X+s=4
X=X +8 =6
X,%,5,8,20
Use the Tabular Form:
variable X X, S S RHS Ratio
-z 2 -3 0 0 0
S 1 1 1 0 4 4/1=4
S, 1 -1 0 1 6 *
Since min{-3} =-3, then X, enter the basic variable.
Since min{4,*} =4,then s leavethebasic variable
variable X X, S S RHS Ratio
-z 5 0 3 0 12
X, 1 1 1 0 4
S, 2 0 1 1 10

Hence, x, =0,x,=4,z=-12.



Example: (Alternative Optimal Solutions)
max z=60x + 35X, + 20X,

s.t. 8%, +6X, + X, <48
4x, + 2%, +1.5%, < 20
2% +1.5%, +0.5%, <8
X, <5
X1, X, % 2 0

Convert the standard form:
max z=60x + 35X, + 20x,
st. 8X, +6X, +X,+5 =48

4x, + 2%, +1.5%,+s, =20

2% +1.5X%, +0.5%,+s, =8

X,+S,=5

X%, %, 8,8, 8,8, 20
Use the Tabular Form:
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variable X X, X, S S S, S, RHS Ratio
z -60 -35 -20 0 0 0 0 0

S 8 6 1 1 0 0 0 48 48/8=6
S, 4 2 1.5 0 1 0 0 20 20/4=5
S; 2 15 0.5 0 0 1 0 8 4/2=4
S, 0 1 0 0 0 0 1 5 *
Since min{—60,-35,-20} =-60, then X enter the basic variable.

Since min{6,5,4,*} =4, then s, leavethe basic variable

variable X X, X, S S S, S, RHS Ratio

z 0 10 -5 0 0 30 0 240

S 0 0 -1 1 0 -4 0 16 *

S 0 -1 0.5 0 1 -2 0 4/0.5=8

X 1 0.75 0.25 0 0 0.5 0 4 4/0.25=16
S, 0 1 0 0 0 0 1 *

Since min{-5 =-5, then X, enter the basic variable.

Since min{*,8,16,*} =8, then s, leavethe basic variable.

variable X X, X, S S S S, RHS Ratio

z 0 0 0 0 10 10 0 280

S 0 -2 0 1 2 -8 0 24

X 0 -2 1 0 2 -4 0 8

X 1 125 0 0 -0.5 15 0 2

S, 0 1 0 0 0 0 1 5

If x, enterthebasic variableand x, leavethe basic variable, then

10

10



Operations Research

variable X X, X, S S S S, RHS Ratio
z 0 0 0 0 10 10 0 280

S 1.6 0 0 1 1.2 56 O 27.2

X, 16 0 1 0 12 -16 0 11.2

X, 0.8 1 0 0 -04 12 0 1.6

S, -08 O 0 0 04 12 1 34

Hence, x, =2,X,=0,%,=8,X,=0,z=280,0r x =0,X,=1.6,X,=11.2,x, =0,z=280.

Example: (Unbounded L Ps)
max z=36x +30x, —3x;, —4X,

St X +X =X <5
6X, + 5%, — X, <10
Xy, X5 X, %, 2 0
Convert the standard form:
max z—-36X, —30x, +3%,+4x, =0
St X +X =X+ =5

6X, +5%X, — X, +5s, =10
X %, %5, %4, 8, S, 2 0

Table Form
variable X X, X, X, S S RHS Ratio
z -36 -30 3 4 0 0 0
S 1 1 -1 0 1 0 5 5/1=5
S 6 5 0 -1 0 1 10 10/6
Since min{—-36,-30} =-36, then x _ enter the basic variable.
Since min{S,%} = 1—(? ,then s, leavethe basic variable.
variable X X, X, X, S S RHS Ratio
z 0 0 3 -2 0 6 60
S 0 76 -1 K% 1 —% % W5l ¥ =20
X 1 % 0 -% 0 % Z *
Since min{-2} =-2,then X, enter the basic variable.
Since min{20,*} =20, then s leavethe basic variable.
variable X X, X, X, S S RHS Ratio
z 0 % -9 0 12 4 100
X, 0 1 -6 1 6 -1 20
X, 1 1 -1 0 1 0 5

We can find points in the feasible region having arbitrarily large z-values.

11 11
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Definition of Degeneracy
An LPisdegenerate(i2 i*) if it has at least one bfs in which a basic variable is equal to

zero.
Example: max  z=5x +2Xx,
s.t. X +X <6
X =% <0
%, %, >0
Convert the standard form:

max  z-5x-2%,=0
st. X+X+s =06

X=%+Ss=0
X, %, 8,S, 20
variable X X, S S RHS Ratio
z -5 -2 0 0 0
S 1 1 1 0 6/1=6
S, 1 -1 0 1 0 0/1=0
Since min{-5,-2} =-5, then x_ enter the basic variable.
Since min{6,0} =0, then s, leavethe basic variable.
variable X X, S S RHS Ratio
z 0 -7 0 5 0
S 0 2 1 -1 6 6/2=3
X 1 -1 0 1 0 *
Since min{—7} =-7,then x, enter the basic variable.
Since min{3,*} =3, then s leavethe basic variable.
variable X X, S S RHS Ratio
z 0 0 35 15 21
X, 0 1 05 -0.5 3
X, 1 0 0.5 0.5 3

Termination is not guaranteed foe degenerate problems. Consider the linear program
max  z=-3x +150x, — & X, +6X,
st. 2% —60X, =5 %, +9x%, <0

2% —90X, — 55 %, +3x, <0
X <1

Xy, %55 X, %, 2 0

We will apply the smplex method to this problem, using the most negative reduced cost to select
the entering variable, and breaking ties in the ratio test by selecting the first candidate row. If thisis
done, then the simplex method cycles—endlessly repeating the same sequence of bases with no
improvement in the objective and without finding the optimal solution.

12 12
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variable X X, X, X, S S S; RHS
A -3 150 -% 6 0 0 0 0
S i -60 -% 9 1 0 0 0
S 3 -90 -% 3 0 1 0 0
S 0 0 1 0 0 0 1 1

Thefinal basisis the same as the initial basis, so that the smplex method has made no progress and
will continue to cycle through these six bases indefinitely.

A variety of techniques have been developed that guarantee termination of the simplex method
even on degenerate problems. One of these, discovered by Bland and often referred to as “Bland’s
rule,” is described here.

variable X X, X, X, S S S RHS
~-Z -1 120 O 0 -1 1 0 0

X, - 10500 1 0 50 150 0 0

X, -1 40 0 1 1 -2 0 0

S, B -10500 0 0 -50 150 1 1
variable X X, X, X, S S, S RHS
A 0 36 0 0 - u = o
X 0 0 1 0 0 0 1 1

Xy 0 -2 0 1 % _% ﬁ 250
X, 1 -168 0 0 —4 = = s
variable X X, X, X, S S, S RHS
7 0 15 0 2 0 2 » %
X 0 0 1 0 0 0 1 1

S 0 -15 0 2 1 -1 I =
X, 1 180 0 6 0 2 = =

Note: Bland’s rule can be inefficient if applied at every simplex iteration since it may select entering
variables that do not greatly improve the value of the objective function.

(Reference: Robert G Bland, New finite pivoting rules for the ssmplex method, Mathematics of
Operations Research 2 (1997) pp. 103-107)

TheBigM Method

Recall that the smplex agorithm requires a stating bfs. In al the problems we have solved so far,
we found a starting bfs by using the slack variables as our basic variables. If an LP hasany > or
equality constraints, however, a starting bfs may not readily apparent. When a bfs is not readily
apparent, the Big M method (or the two-phase simplex) may be used to solve the problem. The Big
M method first find a bfs by adding “artificial” variables to the problem. The objective function of

14 14
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the original LP must, of course, be modified to ensure that the artificial variables are all equal to O at

the conclusion of the simplex algorithm.
Example: Bevco

Bevco manufactures an orange-flavored soft drink called Oranj by combining orange soda and
orange juice. Each ounce of orange soda contains 0.5 oz of sugar and 1 mg of vitamin C. Each
ounce of orange juice contains 0.25 oz of sugar and 3 mg of vitamin C. It costs Bevco 2¢ to
produce an ounce of orange soda and 3¢ to produce an ounce of orange juice. Bevco’s marketing
department has decided that each 10-0z bottle of Oranj must contain at least 20 mg of vitamin C and
a most 4 oz of sugar. Use linear programming to determine how Bevco can meet the marketing

department’s requirements at minimum cost.
Solution: Let

X, = number of ounces of orange sodain a bottle of Oranj
X, = number of ounces of orange juice in a bottle of Oranj

Then the appropriate LPis

min z=2x,+3Xx,
st. X +74x<4
X +3%, 220
X +X%, =10
X, % >0
Convert the standard form:

max —z=-2X —3X,—Ma, -Ma,
st. X +nx+s=4
X +3%, -6 +a,=20

X +X +a,=10
X, %1 9,6,8,8,20
Tabular Form:
X X S € a, a, RHS Ratio
-z 2 3 0 0 M M 0
S 7 A 1 0 0 0 4
a, 1 3 0 -1 1 0 20
a, 1 1 0 0 0 1 10
Theinitia tableis
X X, S € a, a, RHS Ratio
-z —2M +2 —4M +3 0 M 0 0 30M
S % Y4 1 0 0 0 4 16
a, 1 3 0 -1 1 0 20 20/3
a, 1 1 0 0 0 1 10 10

Since min{—-2M +2,-4M +3} =-4M +3, then X, enter thebasic variable.

20 0

Since min{16,?,10}=%,then a, leavethe basic variable.

15
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X % S & & 3, RHS Ratio
-7 —-2M +% O O -M +% 4M —% O 10M +6%
S 2 0 1 K2 — 2 0 7 28/5
X, 7 1 0 % % 0 B 20
& % 0 0 % —% 1 % 5
Since min{-2M+3; -M+3} =-2M+3/ then X enter the basic variable.
Since min{?,ZO,S} =5, then a, leavethebasic variable.
X, X, S e a, a, RHS Ratio
-z 0 0 0 % MY M 25
S 0 0 1 - % - % —% 74
X, 0 1 0 - % % - % 5
X 1 0 0 % —% % 5
Hence, X, =5X%,=52=25
The Two-Phase Simplex M ethod
Case l:
Example: min z=2x +3x,
st. X +4ux<4
X + 3%, > 36
X +X, =10
X, %, >0
Phase | problem:
min w=a,+a,
st. X +nx+s=4
X +3X,—-e,+a,=36
X +X +a,=10
X, %1 9,6,8,8,20
X, X, S e a, a, RHS Ratio
-W 0 0 0 0 1 1 0
S 7 % 1 0 0 0 4
a, 1 3 0 -1 1 0 36
a, 1 1 0 0 0 1 10
Theinitia tableis
X, X, S e a, a, RHS Ratio
-W -2 -4 0 1 0 0 -46
S 7 74 1 0 0 0 4 16
a, 3 0 -1 1 0 36 12
a, 1 0 0 0 1 10 10

16 16
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Since min{-2,-4} =-4,then x, enter the basic variable.
Since min{16,12,10} =10, then a, leavethe basic variable.

X X, S e a, a, RHS Ratio
—w 2 0 0 1 0 4 -6
S Y 0 1 0 0 -4 %
a, -2 0 0 -1 1 -3 6
X, 1 1 0 0 0 1 10

Since w= 0, then the origin LP must have no feasible solution.
Casell:
min z=2x+3x,
st. X +x4nx <4
X +3%,220
X +X, =10
X, % 20
Phase | problem:
min w=a, +a,
st. X +4x+s=4
X +3x-6+a,=20

X +X +a,=10
X, %:9,6,8,8,20
X, X, S e a, a, RHS Ratio
-W 0 0 0 0 1 1 0
S 7 Y 1 0 0 0 4
a, 1 3 0 -1 1 0 20
a, 1 1 0 0 0 1 10
Theinitia tableis
X, X, S e a, a, RHS Ratio
-w -2 -4 0 1 0 0 -30
S 7 i 1 0 0 0 4 16
a, 1 3 0 -1 1 0 20 20/3
a, 1 1 0 0 0 1 10 10
Since min{-2,-4} =—4,then X, enter thebasic variable.
Since min{16,2—??,10} = ? a, leavethebasic variable
X, X, S e a, a, RHS Ratio
-W -7 0 0 ~ 7 W 0 %
S Y2 0 1 Ao — 0 7 28/5
X, % 1 0 - % 0 Bz 20
3, % 0 0 7 ~% 1 %4 5

17 17



Since min{—%,—%}:—é,then X, enter the basic variable.

Since min{%,20,5}=5,then a, leavethe basic variable.

Operations Research

X, X, s Y a, a, RHS Ratio
-W 0 0 0 1 1 0 0
s 0 0 1 ~% % ~% 74
X, 0 1 0 - % % ~% 5
X 1 0 0 % - % % 5
Phase Il:
min z=2x+3x,
st. s—-%6 =7
X, =€ =5
X +%€ =5
X, %, 9,6 20
X, X, S =Y RHS Ratio
-Z 2 3 0 0 0
S 0 0 1 ~-% Y
X, 0 1 0 -% 5
X, 1 0 0 % 5
Theinitial tableis
X % S € RHS Ratio
-z 0 0 0 % -25
S 0 0 1 -% Y
X, 0 1 0 -7 5
X, 1 0 0 % 5

Hence, X, =X,=52z=25
Caselll:
max z=40x +10x, + 7%, +14x,
st. X —-X%+2%=0
—2X + X, —2% =0
X XX =% =3
2%, + X+ X, + 2% + X =4
X 20(=1234,56)
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Convert the standard form:
max z=40x +10x, + 7% +14x;
st. X —X+2%+3 =0
2%+ X -2x%+a,=0
X X X=X +85 =3
2% + X+ X, + 2% + X% =4
X >0(1=123,/4,56),a >0(i=12,3)

Phase I:
min w=a, +a, +a,
st. X —X+2%+3 =0
2% + X -2x%+a,=0
X+ X+ X=X +8;=3
2%+ X+ X, +2% + % =4
X >0(=1234,56),8 >0(=12,73)
Table Form
X X X Xy X5 Xe a & & RHS Ratio
-W 0 0 0 0 0 0 1 1 1 0
a 1 -1 0 0 2 0 1 0 0
a, -2 1 0 0 -2 0 0 1 0 0
a, 1 1 0 1 -1 0 0 1 3
X, 0 2 1 1 2 1 0 0 0 4
Theinitial tableis
X X X Xy X5 Xe a & & RHS Ratio
-W 0 0 -1 0 -1 1 0 0 0 -3
a 1 -1 0 0 2 0 1 0 0 0 *
a, -2 1 0 0 -2 0 0 1 0 0 *
a, 1 0 1 0 1 -1 0 0 1 3 3
X, 0 2 1 1 2 1 0 0 0 4 4
Since min{—],—J}:—l_.I.hen X, enter the basic variable.
Since min{*,*,3,4} =3, then a, leavethebasic variable.
X % X3 Xy X5 X5 & a, & RHS  Ratio
-W 1 0 0 0 0 0 0 0 1 0
a 1 -1 0 0 2 0 1 0 0 0
a, -2 1 0 0 -2 0 0 1 0 0
X 1 1 0 -1 0 0 1 3
X, -1 2 0 1 2 0 0 -1 1
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Phase I1:
max z=10Xx, + 7%, +14x;
st. =X +2%+8 =0
X —2%+8,=0
X+ X=X =3
2%, + X, + % + 2% =1
X >0(i=2,3,4,56),a >0(i=12)
Table Form
% % X4 X X & a, RHS  Ratio
z -10 0 0 -7 -14 0 0 0
& -1 0 0 2 0 1 0 0 *
a 1 0 0 -2 0 0 1 0 *
% 0 1 0 1 -1 0 0 3 *
X, 2 0 1 2 0 0 1 0.5

Since min{-10,-7,-14} =-14, then x, enter the basic variable.
Since min{*,*,*,0.5} =0.5, then X, leavethe basic variable.

% % X % X5 & & RHS Ratio
z 4 0 7 0 0 0 0 7
a 0 0 0 2 0 1 0 0
a, 1 0 0 0 0 0 1 0
X 1 1 0.5 15 0 0 0 35
Xs 1 0 0.5 0.5 1 0 0 0.5

Hence, X,=3.5x,=052z=7.
Unrestricted-in-Sign Variables
max z=30x, —4x,
st. 5x-%<30
X <5
X 20,%, urs
Convert to
max z=30x, —4x, +4x;
st. 5x—X%+x <30
X <5
X3 %5, % 2 0
Convert to the standard form:
max z—30x, +4x,—4x;,=0
st. 5x—-%+x+5=30
X+S,=5

"

X%, %,5,S, 20
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Table Form
X X, X S S, RHS Ratio
z -30 4 -4 0 0 0
S 5 -1 1 1 0 30 6
S 1 0 0 0 1 5 5
Since min{-30,-4} =-30, then X enter the basic variable.
Since min{6,5 =5, then s, leavethe basic variable.
X X X S S, RHS Ratio
z 0 4 -4 0 30 150
S 0 -1 1 1 -5 5 5
X 1 0 0 0 1 5 *
Since min{—-4} =-4,then X; enter the basic variable.
Since min{5,*} =5, then s leavethe basic variable.
X X X S S, RHS Ratio
z 0 0 0 4 10 170
X, 0 -1 1 1 -5 5
X 1 0 0 0 1 5
Hence, x =5x,=X,—-x, =0-5=-5,z=170.

The Revised Simplex Method(i2 &+ ¥ 2572 )

Assume that we are solving a max problem that has been prepared for solution by the Big-M
method and that at this point, the LPhas m constraints and n variables. Although some of these
variables may be dack, surplus, or artificial, we choose to label them x,X,,---,X,. Then the LP

may be written
max Z=CX +CX, +---+C,X,
St X+ 8,X, A X, =0
8% + 8% 1+ 8y X, =,

Xy + Xy + oo+ 8y X, =1,

X >0(=212,---,n)
Matrix Form:
max z=C"X
st. =b
X>0
We can be written as
max z=C[ X, +C} X,
s.t. BXg; +NX, =b
Xg, Xy 20

21
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C. isthe 1xm row vector whose elements are the coefficients of the basic variables.

C\ is the 1x(n-m) row vector whose elements are the coefficients of the nonbasic

variables.
The mxm matrix B isthematrix whose jth column isthe column for basic variables.
N isthe mx(n—m) matrix whose columns are the columns for the nonbasic variables.
Xg isthe mx1 vector listing the basic variables.
X, isthe (n—m)x1 vector listing the nonbasic variables.
Example: Consider the max LP
max z=60x, +30x, + 20x, +0s +0s, +Os;
st. 8X +6X, +X,+S =48
4x, +2X,+1.5%, +s, =20
2%, +1.5x, + 0.5, +s5,=8
X, %,:%,5,%,5 20

S
Supposethat X, =| X, |, then
X
S X
max z=CgXz+Ci X, =[0 20 60] x, [+[30 0 O] s,
X S
1 1 8is 6 0 0} x 48
st. BX,+NX,=b=|0 15 4| x|+ 2 1 0fs,|=|20
0 05 2| x| [15 0 1| s, 8
Xg: Xy 20=%,%,%,5,5,520
Assume that the LP problem is
max z=CL X, +C X,
st. BX, +NX, =b
Xg, X >0
Then, the current tableau is
Xg Xn RHS Xg Xy RHS
z 0 z 0
o) oy - CIB'N-C. C!B7
X B N b Xg | BN B™b
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Algorithm of the revised smplex method:

1. Compute Cy =CiB*N-C{ =[¢;|. If ¢, 20, Vj, then the LP problem is optimal, stop;

otherwise, choose g suchthat ¢, =min{c, |C, <O}, then x, should enter the basic variable.

_ b b
2. Compute a,=B™a, and b =B™b. Choose p such that _—p:min{_ﬂﬁ.q >O}, then x,
apq aiq

should leave the basic variable.
3. Update X;, X,,B,N,gotostep 1.
Example: Consider the LP

max Z=3X +5X,
s.t. X <4
2x, <12
3%, +2x, <18
¥, %, 20
Then, the standard form is
max Z=3X, +5X,
s.t. X +5 =4

2X, +s, =12
3%, +2X, +s,=18

X:%,9,5,8 20
Iteration O
s 100
Since Xz =|s,| ad XN:{Xl]then B=|0 1 0|=B™".
S, % 0 01
1 00]10
Since C\=CgB*'N-C{=[0 0 0]|0 1 0[|0 2|-[3 5]=[-3 -5], then X, enter the
00 32
basic variable.
1 0 o]fo] [o 1 0 0][4] [4
Since a,=B'a,=/0 1 0|/2(=|2| , b=B"=0 1 0|/12|=|12| , and
00 12| |2 0 0 1|/18| |18

[teration 1
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S

Since X;=|x | and X,

S;

{Xl]then B
S

1

Since C\=CiB*N-C{=[0 5 0]0

basic variable.
1
Since a=B'a=|0
0
. 6
mln{x,x,§}=3,then S,
Iteration 2
S

Since C\=CiB'N-C[=[0 5 3]

1
S
Xg=|% [=B7b=|0
X
0

-1

NIFRL O

|leave the basic variable.

F?]thenB:

S
1 1
3
o 1
2
0o -1
3

11

i’ 3Ira7 12

=0

? 18] |2

11

3 3|

Product Form of the Inverse

Consider a basis (matrix) B composed of the columns ag,ag .-+, 3

known.

24

B,
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100 1 0 0
020andB‘1=0%0.
021 0 -1 1
Olry o
0||0 1|-[3 0]=[—3 g},thenxlenterthe
|30

1 0 0], 1 4
, 5=B‘1b:0%012=6 . and

o 1 1/18] [6

; 11
10 1 i’ 3
ozoandB-l:oE 0
0 2 3

o .1 1

i 3 3]
1]
3o o .
0 |[1 o|-[o o]:[E 1]then
201
3

2

12|=16|,and Zm =CiB=CIX,=[0 5 3]/6|=36.

2

and suppose that B™ is

24



Operations Research

B-lan a - a ]

Suppose that the nonbasic column a, replaces ag , resulting in the new basis (matrix) B, .

Bnew:[aBl aB2 aB,,l ak aBr+1 aB,“:'

Noting that a, =Ba, since a =B'a and a; =Be where g isavector of zeros except for 1

a the ith position, we have

Bnew:[aBl aB2 aB,,l ak aBHl aBm]
=[Be Be, -+ Be, Ba Bg, - Bl

=Ble e - &, & €, - &
=BT

where T istheidentity withthe rth columnreplacedby a,,i.e,

rth column

o Lo :
00 0 a 0 -+ 0|« rth row
00 0 a, O 1]
Since
1 0 0 a O 0|1 0 0O 0]
0 1 0 a, O 0|0 0 0O 0

_ O. -
[ 10 O 0 O 0]
10 0 a O 0

_ 01 O 0 0 --0
01 - 0243, O 0. .

~ : : 1

00 O 1 0 - 0(00O0 O — 0 - 0
. Ak

25
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thentheinverseof T is

0

Therefore, B, =(BT) =T 'B*'=EB™.

Example: Consider the LP

1.

2.

max Z=3X, +5X,
st. X, +5

2%, +5,

3% +2X,

S\
If Xg=|s,|.then B

S5

S

1
=0
0

=4

=12
+5s,=18
X:%,8,S,,5,20

O +—» O

= O O

B

If Xg=|%|,1.e, X, replace s,,then

S5

26
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0
& =Ba=|2
2
1 00
1
=0 = O
= 2
0 11
1 0 O
1 4 1
B, =EB =0 > 0
0 11
S
3. If Xg=|x%x|,i.e, x replace s;,then
X
1 0 O
a=B"a=|0 % 0
0 -11
10 -2
3
E,.=|0 1 O
00 1
L 3]
10 —=
B,'=EB,'=|0 1 0
00 1
L 3

Example: TheLPis

max Z=3X+X+X,
st. X +X +X%<6
2%, %<4

X, +X%<2

Xy, %, %5 2 0

27
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11
3 3
E
2

11
3 3
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Then, the standard form is

Operations Research

max Z=3X+X+X,
s.t. X +X +X+S5=6
2%, -%+S,=4
X, +X+S5=2
X1 %0 %955, 82 0
Iteration O
S X 1 00
Since Xz=|s,| and X, =|% |,then B={0 1 0|=B".
S, X5 0 01
1 00|11 1
Since C{=C{B*N-C{=[0 0 0][0 1 0||2 0 -1|-[3 1 1]=[-3 -1 -1], then X,
0 0 1fj0 1 1
enter the basic variable.
1 0 0|1} |1 1 0 0||6] |6
Since a4 =B'a=|0 1 0|[2|=|2|, b=B™=|0 1 0||4|=|4/|, and min{%g,x}zz,
0 0 10| |O 0 0 1(/2] |2
then s, leavethe basic variable.
lteration 1
1 —% 0 1 —% 0
S % 1 1
Since Xg=|x| and X, =|x,|,then E=|0 > 0| and B,'=EB;'=|0 > 0].
. % 0 0 1 0 0 1
1 1L
12 11 0 . 5
Since C{=CiB'N-Cy=[0 3 0]0 5 0 -1 1-[11 o]:[—l - E}’ then
0 0 1 1 0
X, enter the basic variable.
28 28
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1 -1 o 3 1 -1 o
2 1 2 2 6
. ., 1 1 S 1
Since &,=B,a,=|0 > 0||-1|= 5| b=B,b=|0 > 0 4|=
o o 1/t1] |1 0 o 1|2
.14 2 . )
min §’X’I =2,then s, leavethebasic variable.
2
Iteration 2
10
S X
Since Xs=| X% and XN=1S : then E=|0 1
10 -3f|1 L o |1 2L 3
2 2 2 2
1 1 1 1
'=EB,'=|0 1 = ||0 = 0|=|0 = =
5 2 2 2 2 2
00 1|0 0 1 0O O 1
1 1 .3
2 211 00
. — T T 1 1 3 3
Since C, =C;B N—CN:[O 3 1] O = =Z1J]010 —[1 0 O]: - =
2 2 10 1 2 2
0O O 1
1 1 3
5 2 20re 1
-1 1 1 TR T
Xg=|%|=B;b=|0 > 5 41=|3|,and Z4 =CsB b:CBXB:[O 3
% o o 1|2 L2

The LINDO Computer Package

1. Setupthe LINDO package

2. Execute Lindow32

29
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Appendix 1 (Proof of Fundamental Theorem of Linear Programming)
Proof of (1):

Denote the columns of A by a,a,,--,a,. Suppose X =[x x, - x| isafeasible

solution. Then, in terms of the columnsof A, this solution satisfies:

X + 8%+ +ax, =h
Assume that exactly p of the variables x are greater than zero, and for convenience,
that they arefirst p variables. Thus,

aX +a% ++a,X, =b

There are two cases, corresponding as to whether the set a,a,,---,a, is linearly

p
independent or linearly dependent.

CASE 1: Assume a,,a,,---,a, islinearly independent. Then p<m.

p

If p=m,thesolution is basic and the proof is complete.

If p<m, then, since A hasrank m, m—p vectors can be found from the remaining
n—p vectors so that the resulting set of m vectorsis linearly independent. Assigning the
value zero to the corresponding m— p variables yields a (degenerate) basic feasible
solution.

CASE 2: Assume a,,a,,---,a, is linearly dependent. Then there is a nontrivial linear

p

combination of these vectors that is zero. Thus, there are constants y,,Y,, -+, Y, a least

one of which can be assumed to be positive, such that

ay +ay,+:-+a,y,=0

Multiplying this equation by ascalar ¢ and subtracting it from ax +a,x, +---+a,x, =b,
we obtain
a(x—ey)+a,(,—¢ey,)+-+a,(x,—gy,)=b

This equation holds for every ¢, and for each ¢ the components x —ey, correspond to
a solution of the linear equalities—although they may violate x —ey, >0. Denoting

yz[yl Y, -y, 00 - O]T,Weseethatforany g

X—-¢gY
is asolution to the equalities. For ¢ =0, this reduces to the origin feasible solution. As ¢
is increased from zero, the various components increase, decrease, or reman constant,
depending upon whether the corresponding Yy, is negative, positive, or zero. Since we
30 30
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assume at least one y, ispositive, at least one component will decreaseas ¢ isincreased.

Increase ¢ to thefirst point where one or more components become zero. Specifically, set

g:min{ﬁ: Y, >0}

Yi
For this value of ¢ the solution given by x—¢y is feasible and has a most p-1
positive variables. Repeating this process if necessary, we can eliminate positive variables
until we have a feasible solution with corresponding columns that are linearly independent.
AT that point CASE 1 applies.

Proof of (2):

Let X =[x X - xn]T be an optimal feasible solution and, as in the proof of (1)

above, suppose there are exactly p positive variables a,a,,---,a,. Again there are two

cases; and CASE 1, corresponding to linear independence, is exactly the same as before.
CASE2 aso goes exactly the same before, but it must be shown that for any ¢ the
solution X —&Y isoptimal. To show this, note that the value of the solution X —¢gY is
C'X-¢C'Y
For & sufficiently small in magnitude, X —&Y is a feasible solution for positive or
negative values of & . Thus, we conclude that C'Y =0. For, if C'y=0, an ¢ of small
magnitude and proper sign could be determined so asto render C'X —¢C'Y smaller than
C"X while maintaining feasibility. This would violate the assumption of optimality of
X and hence we must have C'Y =0.
Having established that the new feasible solution with fewer positive components is also
optimal, the remainder of the proof may be completed exactly asin part (1).
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Appendix 2 (Proof of Equivalence of Extreme Points and Basic Feasible Solution)
Suppose first that X =[x % - x, 0 O - 0] is a basic feasble solution to

AX=b and X>0..Then

ax +aX, +-+ax, =b
where a,a,,---,a,, thefirst m columns of A, are linearly independent. Suppose that X
could be expressed as a convex combination of two other points in K ; say,
X=aY+1-a)Z, O<a<l, Y#Z. Since al components of X,Y,Z are nonnegative
and since O<a <1, it follows immediately that the last n—m components of Y and Z
are zero. Thus, in particular, we have

ay, +ay,+ - +a,y, =b
and

az +8,z,+-+a,2,=b
Since the vectors a,,a,,---,a, are linearly independent, it follows that X =Y=Z and
hence X isanextremepointof K.
Conversely, assume that X is an extreme point of K. Let us assume that the nonzero
componentsof X arethefirst k components. Then
X X+ +aX, =b
with x >0, i=12,---,k. To show that X is a basic feasible solution it must be shown
that the vectors a,a,,---,a, arelinearly independent. We do this by contradiction. Suppose
that a,a,,---,a, arelinearly dependent. Then thereis anontrivia linear combination thet is
zero:

ay, +aY, ++aYy, =0

Define the n-vector Y=[y, y, --- y, 0 O - 0].Since x >0, , it is possible to

sdect ¢ suchthat
X+eY>0 and X—-¢Y>0

We then have X =%(X +5Y)+%(X —&Y) which expresses X as a convex combination

of two distinct vectorsin K. This cannot occur, since X is an extreme point of K. Thus,
a,a,,-,a, arelinearly independent and X isabasic feasible solution.
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