Matrix Algebra(矩陣代數)

Definition of Matrix

A matrix(矩陣) is any rectangular array of numbers with m rows(列) and n columns(行).

Example:

$$A = \begin{bmatrix} 3 & 2 & 4 \\ 6 & 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad D = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$$

are all matrices.

Example: The structural steel plant is expected to earn \$4.0 million if the rival firm does not enter the market and \$2.0 million if it does. The stainless steel plant is expected to earn \$3.1 million whether or not the competitor enters the market, but the diversified plant will earn \$3.5 million or \$2.6 million according to whether or not a competitive plant is erected.

$$A = \begin{bmatrix} 4.0 & 3.1 & 3.5 \\ 2.0 & 3.1 & 2.6 \end{bmatrix}$$

Notation:

If a matrix A has m rows and n columns, we call A an $m \times n$ matrix. We refer to $m \times n$ as the **order**(階) of the matrix. A typical $m \times n$ matrix A nay be written as

$$A_{m \times n} = [a_{ij}]_{m \times n} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

Remark: If m = n, then the matrix is a square matrix(方陣).

Example: $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$ is an 2×3 matrix.

The number in the *i*th row and *j*th column of A is called the *ij*th element($\overline{1}$, $\overline{1}$)(or

entry) of A and is written a_{ii} .

For example, if

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

then $a_{11} = 1$, $a_{23} = 6$, and $a_{31} = 7$.

Definition of Equality

Two matrices $A = \begin{bmatrix} a_{ij} \end{bmatrix}$ and $B = \begin{bmatrix} b_{ij} \end{bmatrix}$ are **equal**(**相\$**) if and only if A and B are

of the same order and for all *i* and *j*, $a_{ij} = b_{ij}$.

For example, if

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \text{ and } B = \begin{bmatrix} x & y \\ w & z \end{bmatrix}$$

then $A = B$ if and only if $x = 1$, $y = 2$, $w = 3$, and $z = 4$.

Remarks:

1. Any matrix with one column may be thought of as a **column vector**(行向量). The number of rows in a column vector is the dimension of the column vector. Thus,

$$\begin{bmatrix} 1\\2 \end{bmatrix}$$

may be thought of as a 2×1 matrix or a two-dimension column vector. \mathbb{R}^m will denote the set of all *m*-dimensional column vectors.

- 2. In analogous fashion, we can think of any matrix with only one row as a row vector(列向量).
- 3. An *m*-dimensional vector in which all elements equal zero is called a **zero vector**(零 向量).
- 4. Any *m*-dimensional vector corresponds to a **directed line segment**(方向直線線段) in the *m*-dimensional plane.

The Scalar Product(純量積) of Two Vectors

Suppose we have a row vector $\vec{u} = \begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix}$ and a column vector

$$\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$

of the same dimension. The scalar product (inner product)(內積) of \vec{u} and \vec{v} (written $\vec{u} \cdot \vec{v}$) is the number $u_1v_1 + u_2v_2 + \dots + u_nv_n$.

For example, if

$$\vec{u} = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$$
 and $\vec{v} = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}$

then $\mathbf{u} \cdot \mathbf{v} = \mathbf{1}(2) + \mathbf{2}(1) + \mathbf{3}(2) = \mathbf{10}$.

Remark 1: Two zero vectors are perpendicular(垂直) if and only if their scalar product equals 0.

Remark 2: $\vec{u} \cdot \vec{v} = \|\vec{u}\| \|\vec{v}\| \cos \theta$, where $\|\vec{u}\|$ is the length of the vector \vec{u} and θ is the angle between the vectors \vec{u} and \vec{v} .

Matrix Operations(矩陣運算)

1. The Scalar Multiple of a Matrix(純量乘矩陣)

Given any matrix A and any number c, the matrix cA is obtained from the matrix A by multiplying each element of A by c.

Example: If $A = \begin{bmatrix} 1 & 2 \\ -1 & 0 \end{bmatrix}$, then $3A = \begin{bmatrix} 3 & 6 \\ -3 & 0 \end{bmatrix}$

2. Addition of Two Matrices(矩陣相加)

Let $A = \begin{bmatrix} a_{ij} \end{bmatrix}$ and $B = \begin{bmatrix} b_{ij} \end{bmatrix}$ be two matrices with the same order. Then the matrix

C = A + B is defined to be the $m \times n$ matrix whose *ij* th element is $a_{ij} + b_{ij}$.

Example: If
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} -1 & -2 & -3 \\ 2 & 1 & -1 \end{bmatrix}$, then $A + B = \begin{bmatrix} 0 & 0 & 0 \\ 2 & 0 & 0 \end{bmatrix}$

3. The Transpose of a Matrix(轉置矩陣)

Given any $m \times n$ matrix

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

the transport of A (written A^T) is the $n \times m$ matrix

$$A^{T} = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{bmatrix}$$

Example: If $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$, then $A^{T} = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$

Remark: $(A^T)^T = A$

4. Matrix Multiplication(矩陣乘法)

The matrix product C = AB of A and B is the $m \times n$ matrix C whose *ij* th element is determined as follows:

ij th element of C = scalar product of row *i* of $A \times$ column *j* of *B*

Example: If
$$A = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 3 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 1 & 2 \end{bmatrix}$, then $AB = \begin{bmatrix} 5 & 8 \\ 7 & 11 \end{bmatrix}$

Example: If $A = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 2 \end{bmatrix}$, then $AB = \begin{bmatrix} 3 & 6 \\ 4 & 8 \end{bmatrix}$, and BA = 11

Remark: $AB \neq BA$. (not commutative)

Properties of Matrix Multiplication(矩陣乘法性質)

1. Row *i* of AB = (row i of A)B

If
$$A = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 3 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 1 & 2 \end{bmatrix}$

Then row 2 of the 2×2 matrix AB is equal to

$$\begin{bmatrix} 2 & 1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 7 & 11 \end{bmatrix}$$

2. Column *j* of AB = A (column *j* of *B*) The first column of *AB* is

$$\begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 7 \end{bmatrix}$$

3. Matrix multiplication is **associative**. That is, A(BC) = (AB)C.

4. Matrix multiplication is **distributive**. That is, A(B+C) = AB + AC. Matrices and Systems of Linear Equations(聯立方程式)

Consider a system of linear equations given by

$$a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n} = b_{1}$$

$$a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n} = b_{2}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$a_{m1}x_{1} + a_{m2}x_{2} + \dots + a_{mn}x_{n} = b_{m}$$
Let $A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}, \quad x = \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix}, \quad b = \begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{m} \end{bmatrix}, \quad \text{then above system of linear}$

equations may be written as Ax = b.

Example: Consider a system of linear equations given by

$$3x_1 - 5x_2 + 7x_3 = 10$$

$$-2x_1 - 4x_2 + x_3 = 0$$

$$x_1 + 2x_2 + 3x_3 = 4$$

$$5x_1 - x_2 + 2x_3 = -3$$

Then the matrix form is

$$\begin{bmatrix} 3 & -5 & 7 \\ -2 & -4 & 1 \\ 1 & 2 & 3 \\ 5 & -1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 10 \\ 0 \\ 4 \\ -3 \end{bmatrix}$$

Definition of Solution

A solution(\mathbf{M}) to a linear system of m equations in n unknown is a set of values for the unknowns that satisfy each of the system's equations.

For example,

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \text{ is a solution to the linear system } \begin{cases} x_1 + 2x_2 = 5 \\ 2x_1 - x_2 = 0 \end{cases}$$

The Gauss-Jordan Method for Solving Systems of Linear Equations

Using the Gauss-Jordan method, we show that any system of linear equations must satisfy one of the following three cases:

Case 1 The system has no solution.

Case 2 The system has a unique solution.

Case 3 The system has an infinite number of solutions.

Elementary Row Operations

An elementary row operation (ERO)(基本列運算) transforms a given matrix A into a new matrix A' via one of the following operations.

Type 1 ERO:

A' is obtained by multiplying any row of A by a nonzero scalar.

Example: $A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 5 & 6 \\ 0 & 1 & 2 & 3 \end{bmatrix}$, $A' = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 3 & 9 & 15 & 18 \\ 0 & 1 & 2 & 3 \end{bmatrix}$

Type 2 ERO:

For some $j \neq i$, let row j of A' = c (row i of A) + (row j of A)

Example: $A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 5 & 6 \\ 0 & 1 & 2 & 3 \end{bmatrix}$, $A' = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 5 & 6 \\ 4 & 13 & 22 & 27 \end{bmatrix}$

Type 3 ERO:

Interchange any two rows of A.

Example: $A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 5 & 6 \\ 0 & 1 & 2 & 3 \end{bmatrix}, A' = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 1 & 3 & 5 & 6 \\ 1 & 2 & 3 & 4 \end{bmatrix}$

Finding a Solution by the Gauss-Jordan Method

- 1. To solve Ax = b, write down the augmented matrix $A \mid b$.
- 2. At any stage, define a current row, current column, and current entry. Begin with row 1 as the current row, column 1 as the current, and a_{11} as the current entry.
 - (a) If a_{11} is nonzero, then use EROs to transform column 1 to

Then obtain the new current row, column, and entry by moving down one row and one column to the right, and go to step 3.

(b) If a_{11} equals 0, then do a Type 3 ERO involving the current row and any row that contains a nonzero number in the current column. Use EROs to transform column 1 to

Then obtain the new row, column, and entry by moving down one row and one column to the right. Go to step 3.

- (c) If there are no nonzero numbers in the first column, then obtain a new current column and entry by moving one column to the right. Then go to step 3.
- 3. (a) If the new current entry is nonzero, then use EROs to transform it

to 1 and the rest of the current column's entries to 0. When finished, obtain the new current row, column, and entry. If this is impossible, then stop. Otherwise, repeat step 3.

- (b) If the current entry is 0, then do a Type 3 ERO with the current row and any row that contains a nonzero number in the current column. Then use EROs to transform that current entry to 1 and the rest of the current column's entries to 0. When finished, obtain the new current row, column, and entry. If this is impossible, then stop. Otherwise, repeat step 3.
- (c) If the current column has no nonzero numbers below the current row, then obtain the new current column and entry, and repeat step 3. If it is impossible, then stop.
- 4. Write down the system of equations A'x = b' that corresponds to the matrix A' | b' obtained when step 3 is completed. Then A'x = b' will have the same set of solutions as Ax = b.

Remark: $Ax = b \xrightarrow{\text{ERO}} A'x = b'$

Example: Find the solution to the following linear system:

$$2x_1 + 2x_2 + x_3 = 9$$

$$2x_1 - x_2 + 2x_3 = 6$$

$$x_1 - x_2 + 2x_3 = 5$$

The augmented matrix representation is

$$A \mid b = \begin{bmatrix} 2 & 2 & 1 & | & 9 \\ 2 & -1 & 2 & | & 6 \\ 1 & -1 & 2 & | & 5 \end{bmatrix}$$
$$\begin{bmatrix} 2 & 2 & 1 & | & 9 \\ 2 & -1 & 2 & | & 6 \\ 1 & -1 & 2 & | & 5 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 1 & \frac{1}{2} & \frac{9}{2} \\ 2 & -1 & 2 & | & 6 \\ 1 & -1 & 2 & | & 5 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 1 & \frac{1}{2} & \frac{9}{2} \\ 0 & -3 & 1 & | & -3 \\ 1 & -1 & 2 & | & 5 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 1 & \frac{1}{2} & \frac{9}{2} \\ 0 & -3 & 1 & | & -3 \\ 0 & -2 & \frac{3}{2} & \frac{1}{2} \end{bmatrix}$$
$$\begin{bmatrix} 1 & 1 & \frac{1}{2} & \frac{9}{2} \\ 0 & 1 & -\frac{1}{3} & 1 \\ 0 & -2 & \frac{3}{2} & \frac{1}{2} \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 & \frac{5}{6} & \frac{7}{2} \\ 0 & 1 & -\frac{1}{3} & 1 \\ 0 & -2 & \frac{3}{2} & \frac{1}{2} \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 & \frac{5}{6} & \frac{7}{2} \\ 0 & 1 & -\frac{1}{3} & 1 \\ 0 & 0 & \frac{5}{6} & \frac{5}{2} \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 & \frac{5}{6} & \frac{7}{2} \\ 0 & 1 & -\frac{1}{3} & 1 \\ 0 & 0 & \frac{5}{6} & \frac{5}{2} \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 & \frac{5}{6} & \frac{7}{2} \\ 0 & 1 & -\frac{1}{3} & 1 \\ 0 & 0 & 1 & \frac{3}{3} \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 & 0 & | & 1 \\ 0 & 1 & -\frac{1}{3} & 1 \\ 0 & 0 & 1 & \frac{3}{3} \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 & 0 & | & 1 \\ 0 & 1 & -\frac{1}{3} & 1 \\ 0 & 0 & 1 & \frac{3}{3} \end{bmatrix}$$

Hence, the solution of the system of equations is

$$x_1 = 1$$

 $x_2 = 2$
 $x_3 = 3$

Exercise: Find the solution to the following linear system:

$$x_1 - x_2 + 5x_3 = -6$$

$$3x_1 + 3x_2 - x_3 = 10$$

$$x_1 + 3x_2 + 2x_3 = 5$$

The solution of the system of equations is

$$x_1 = 1$$
$$x_2 = 2$$
$$x_3 = -1$$

Example: Find all solutions to the following linear system:

$$x_1 + 2x_2 = 3$$

$$2x_1 + 4x_2 = 4$$
Solution: Since $\begin{bmatrix} 1 & 2 & | & 3 \\ 2 & 4 & | & 4 \end{bmatrix} \xrightarrow{\text{ERO}} \begin{bmatrix} 1 & 2 & | & 3 \\ 0 & 0 & | & 2 \end{bmatrix}$

Hence, the linear system has no solution.

Example: Apply the Gauss-Jordan method to the following linear system:

$$x_{1} + x_{2} = 1$$

$$x_{2} + x_{3} = 3$$

$$x_{1} + 2x_{2} + x_{3} = 4$$
Solution: Since
$$\begin{bmatrix} 1 & 1 & 0 & | & 1 \\ 0 & 1 & 1 & | & 3 \\ 1 & 2 & 1 & | & 4 \end{bmatrix} \xrightarrow{\text{ERO}} \begin{bmatrix} 1 & 0 & -1 & | & -2 \\ 0 & 1 & 1 & | & 3 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

Hence, the linear system has an infinite number of solutions.

Basic Variables and Solutions to Linear Equation Systems

After the Gauss-Jordan method has been applied to any linear system, a variable that appears with a coefficient of 1 in a single equation and a coefficient of 0 in all other equations is called a **basic variable (BV)(基變數)**.

Any variable that is not a basic variable is called a **nonbasic variable** (**NBV**)(非基變數). Example: Consider

$$A' \mid b' = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & | & 3 \\ 0 & 1 & 0 & 2 & 0 & | & 2 \\ 0 & 0 & 1 & 0 & 1 & | & 1 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}$$

Then $BV = \{x_1, x_2, x_3\}$ and $NBV = \{x_4, x_5\}$.

Linear Independence and Linear Dependence

A linear combination(線性組合) of the vectors in V is any vector of the form

 $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_k\mathbf{v}_k$, where c_1, c_2, \dots, c_k are arbitrary scalars.

Example: If $V = \{ \begin{bmatrix} 1 & 2 \end{bmatrix}, \begin{bmatrix} 2 & 1 \end{bmatrix} \}$, then

$$2v_1 - v_2 = 2[1 \ 2] - [2 \ 1] = [0 \ 3]$$

$$v_1 + 3v_2 = [1 \ 2] + 3[2 \ 1] = [7 \ 5]$$

$$0v_1 + 3v_2 = 0[1 \ 2] + 3[2 \ 1] = [6 \ 3]$$

are linear combinations of vectors in V.

Definition of Linearly Independent

A set V of *m*-dimensional vectors is **linearly independent**(線性獨立) if the only linear combination of vectors in V that equals $\overline{0}$ is the trivial linear combination.

Example: Since $c_1 \begin{bmatrix} 1 & 0 \end{bmatrix} + c_2 \begin{bmatrix} 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \end{bmatrix} \Leftrightarrow c_1 = c_2 = 0$. Then the set of vectors

 $V = \{[1,0], [0,1]\}$ is a linearly independent set of vectors.

Definition of Linearly Dependent

A set V of *m*-dimensional vectors is **linearly dependent**(線性相關) if there is a nontrivial linear combination of vectors in V that adds up to $\overline{0}$.

Example: Since $c_1 \begin{bmatrix} 1 & 2 \end{bmatrix} + c_2 \begin{bmatrix} 2 & 4 \end{bmatrix} = \begin{bmatrix} 0 & 0 \end{bmatrix} \Leftrightarrow c_1 = -2c_2$, then there is a nontrivial linear combination with $c_1 = 2$ and $c_2 = -1$. Hence, the set of vector $V = \{ \begin{bmatrix} 1, 2 \end{bmatrix}, \begin{bmatrix} 2, 4 \end{bmatrix} \}$ is a linearly dependent set of vectors.

Definition of the Rank of a Matrix

The **rank**(\mathfrak{R}) of A is the number of vectors in the largest linearly independent subset of \mathbb{R} .

For examples:

1. The rank of
$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
 is 0.2. The rank of $\begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$ is 1.3. The rank of $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ is 2.

Example Using Gauss-Jordan Method to Find Rank of Matrix

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 2 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & \frac{1}{2} \\ 0 & 2 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & \frac{1}{2} \\ 0 & 0 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & \frac{1}{2} \\ 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & \frac{1}{2} \\ 0 & 0 & 1 \end{bmatrix}$$
 Thus, rank $A = 3$.

Definition of the Inverse of a Matrix

The **diagonal** elements of a square matrix are those elements a_{ij} such that i = j.

A square matrix for which all diagonal elements are equal to 1 and all nondiagonal elements are equal to 0 is called an **identity matrix**(單位矩陣).

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

For a given $m \times m$ matrix A, the $m \times m$ matrix $B = A^{-1}$ is the **inverse**(反矩陣) of A if

$$BA = AB = I_m$$

Example: Let $A = \begin{bmatrix} 2 & 0 & -1 \\ 3 & 1 & 2 \\ -1 & 0 & 1 \end{bmatrix}$. Since

2	0	-1]	[1	0	1	[1	0	0]
3	1	2	-5	1	-7	=	0	1	0
1	0	1	1	0	2 _		0	0	1
[1	0	1]	Γ2	0	_1	I Г	1	0	0]
		-	-	U	1		-	U	×
-5	1	-7	3	1	2	=	0	1	0

then $A^{-1} = \begin{bmatrix} 1 & 0 & 1 \\ -5 & 1 & -7 \\ 1 & 0 & 2 \end{bmatrix}$

Use the Gauss-Jordan Method to Invert a Matrix

Example: $A = \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$ Solution: $\begin{bmatrix} 2 & 5 & | & 1 & 0 \\ 1 & 3 & | & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & \frac{5}{2} & | & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & | & -\frac{1}{2} & 0 \\ 0 & \frac{1}{2} & | & \frac{5}{2} & | & \frac{1}{2} & 0 \\ 0 & 1 & | & -1 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & | & 3 & -5 \\ 0 & 1 & | & -1 & 2 \end{bmatrix}$ Hence, $A^{-1} = \begin{bmatrix} 3 & -5 \\ -1 & 2 \end{bmatrix}$. Example: $A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$ Since $\begin{bmatrix} 1 & 2 & | & 1 & 0 \\ 2 & 4 & | & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & | & 1 & 0 \\ 0 & 0 & | & 2 & 1 \end{bmatrix}$ Hence matrix A does not have inverse. Example: Find the inverse of $A = \begin{bmatrix} 1 & 0 & 1 \\ 2 & -2 & -1 \\ 3 & 0 & 0 \end{bmatrix}$.

Solution: $A^{-1} = \begin{bmatrix} 0 & 0 & \frac{1}{3} \\ -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ 1 & 0 & -\frac{1}{3} \end{bmatrix}$

Using Matrix Inverses to Solve Linear Systems

$$A\mathbf{x} = b \Longrightarrow \mathbf{x} = A^{-1}b$$

For example, to solve $\begin{array}{c} 2x_1 + 5x_2 = 7\\ x_1 + 3x_2 = 4 \end{array}$ write the matrix representation: $\begin{bmatrix} 2 & 5\\ 1 & 3 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} = \begin{bmatrix} 7\\ 4 \end{bmatrix}$

$$A = \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix} \Longrightarrow A^{-1} = \begin{bmatrix} 3 & -5 \\ -1 & 2 \end{bmatrix}$$
$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = A^{-1}b = \begin{bmatrix} 3 & -5 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 7 \\ 4 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Example: To solve AX = b, where

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 2 & 0 & 1 \end{bmatrix}, b = \begin{bmatrix} 18 \\ 23 \\ 13 \end{bmatrix}$$

Solution: Since $A^{-1} = \begin{bmatrix} -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{5}{3} & -\frac{7}{3} \\ \frac{2}{3} & -\frac{4}{3} & \frac{5}{3} \end{bmatrix}$, then $X = A^{-1}b = \begin{bmatrix} -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{5}{3} & -\frac{7}{3} \\ \frac{2}{3} & -\frac{4}{3} & \frac{5}{3} \end{bmatrix} \begin{bmatrix} 18 \\ 23 \\ 13 \end{bmatrix} = \begin{bmatrix} 5 \\ 2 \\ 3 \end{bmatrix}$

Definition of Determinants

Associated with any square matrix A is a number called the determinants(行列式) of

A (often abbreviated as det A or |A|).

1. For a 1×1 matrix $A = [a_{11}],$

$$|A| = a_{11}$$

2. For a 2×2 matrix
$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$
,

$$|A| = a_{11}a_{22} - a_{12}a_{21}$$

3. For a 3×3 matrix
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
,

$$|A| = a_{11}a_{22}a_{33} + a_{21}a_{32}a_{13} + a_{31}a_{23}a_{12} - a_{13}a_{22}a_{31} - a_{23}a_{32}a_{11} - a_{33}a_{21}a_{12}$$

Definition of Minor

If A is an $m \times m$ matrix, then for any values of i and j, the ijth **minor**(餘因子) of A (written A_{ij}) is the $(m-1) \times (m-1)$ submatrix(子矩陣) of A obtained by deleting row i and column j of A. For example,

> 3 6

If
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$
, then $A_{12} = \begin{bmatrix} 4 & 6 \\ 7 & 9 \end{bmatrix}$ and $A_{32} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$

Let A be any $m \times m$ matrix. We may write A as

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mm} \end{bmatrix}$$

To compute |A|, pick any value of i ($i = 1, 2, \dots, m$) and compute |A|:

$$|A| = (-1)^{i+1} a_{i1} |A_{i1}| + (-1)^{i+2} a_{i2} |A_{i2}| + \dots + (-1)^{i+m} a_{im} |A_{im}|$$

Example: Find |A| for $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$.

Solution:

$$|A| = 1 \times \begin{vmatrix} 5 & 6 \\ 8 & 9 \end{vmatrix} - 2 \times \begin{vmatrix} 4 & 6 \\ 7 & 9 \end{vmatrix} + 3 \times \begin{vmatrix} 4 & 5 \\ 7 & 8 \end{vmatrix}$$
$$= 1 \times (-3) - 2 \times (-6) + 3 \times (-3)$$
$$= 0$$
for $A = \begin{bmatrix} 1 & 3 & -2 \\ 2 & 5 & -2 \end{bmatrix}$

Exercise: Find |A| for $A = \begin{bmatrix} 1 & 3 & -2 \\ 2 & 5 & -3 \\ -3 & 2 & -4 \end{bmatrix}$.

|A| = -1

Property: Invertibility Criterion

If A is a square matrix, then A has an inverse if and only if $det(A) \neq 0$. Example: Show that the matrix A has no inverse.

$$A = \begin{bmatrix} 1 & 2 & 0 & 4 \\ 0 & 0 & 0 & 3 \\ 5 & 6 & 2 & 6 \\ 2 & 4 & 0 & 9 \end{bmatrix}$$

Solution: Since det(A) = 0, then the matrix A has no inverse.

Definition of Nonsingular and Singular

A matrix is **nonsingular** if its rank equals both the number of rows and the number of columns. Otherwise, it is **singular**.

Theorem

- (a) If A is nonsingular, there is unique nonsingular matrix A^{-1} such that $A^{-1}A = I = AA^{-1}$.
- (b) If A is nonsingular and B is a matrix for which either AB = I or BA = I, then $B = A^{-1}$.

(c) Only nonsingular matrices have inverse.

(d) If $|A| \neq 0$, then A is nonsingular.