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graphs in Fig. 8 offers a sequence of partitions. The partitions are 
ordered by the inclusion and thus the partition sequence shows a 
hierarchical partitions. The hierarchical partitions of our example is 
shown by a partition tree in Fig. 9. 

Therefore we have obtained hierarchical partitions of a system from 
a cover described by a hypergraph. Furthermore, the partition tree 
shows the relative logical distance between vertices of the system. For 
example, the edge Es, 0 = {h ,  i }  is grouped into a macro-vertex at 
the first iteration, El,  1 = { a ,  b ,  c} at the second iteration, etc. Then, 
the logical distance between a and b is greater than that between h 
and a .  

V. CONCLUSION 

We have developed a reduction method of hypergraph. In the 
reduction, an edge is merged into a macro-vertex. The reduction 
is realized by iterations, and the iterations provide a sequence of 
reductions. 

In the reduction, an edge is merged into a macro-vertex and thus a 
macro-vertex in a reduced hypergraph represents an edge (subgraph). 
Therefore a reduced graph can give a partition of a system. 

The sequence of reductions provides a sequence of partitions. The 
partitions are ordered by the inclusion of partitions. The sequence of 
partitions gives hierarchical partitions of the system. The proposed 
method allows to reduce the complexity of the system represented 
by hypergraphs. 
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Simplification of Fuzzy-Neural 
Systems Using Similarity Analysis 

C. T. Chao, Y. J. Chen, and C. C. Teng 

Absti-ucf-This paper presents a fuzzy neural network system (FNNS) 
for implementing fuzzy inference systems. In the FNNS, a fuzzy similarity 
measure for fuzzy rules is proposed to eliminate redundant fuzzy logical 
rules, so that the number of rules in the resulting fuzzy inference system 
will be reduced. Moreover, a fuzzy similarity measuie for  fuzzy sets that 
indicates the degree to which two fuzzy sets are equal is applied to 
combine similar input linguistic term nodes. Thus we obtain a method 
for reducing the complexity of a fuzzy neural network. We also design 
a new and efficient on-line initialization method for choosing the initial 
parameters of the FNNS. A computer simulation is presented to illustrate 
the performance and applicability of the proposed FNNS. The result 
indicates that the FNNS still has desirable performance under fewer fuzzy 
logical rules and adjustable parameters. 

I. INTRODUCTION 

It is known that conventional approaches to system modeling that 
are based on mathematical tools, e.g., difference equations, perform 
poorly in dealing with complex and uncertain systems. The reason 
is that, in many cases, it is very difficult to find a global function 
or analytical structure for a nonlinear system. In contrast, fuzzy 
logic provides an inference morphology that enables approximate 
human reasoning capability to be applied in a fuzzy inference system. 
Therefore, a fuzzy inference system employing fuzzy logical rules 
can model the qualitative aspects of human knowledge and reasoning 
processes without employing precise quantitative analysis. In recent 
years, artificial neural networks have also played an important role in 
solving many engineering problems [6],  [ 121. Neural networks offer 
advantages such as learning, adaption, fault-tolerance, parallelism, 
and generalization. In view of the versatility of neural networks and 
fuzzy logic, a neural-network-based fuzzy inference system can be 
expected to exhibit many advantageous features. 

The benefits of combing fuzzy logic and neural networks have 
been explored extensively in the literature, e.g., the fuzzy neural 
network in [3], [5], [8], the adaptive-network-based fuzzy inference 
system in [4], and the fuzzy logical system in [17]. The common 
advantages found in the above systems lie in that 1) they can 
automatically and simultaneously identify fuzzy logical rules and tune 
the membership functions, and 2) the parameters of their systems 
have clear physical meanings, which they do not have in general 
neural networks. Fuzzy systems utilizing the learning capability of 
neural networks can successfully construct the input-output mapping 
for many applications. However, no efficient process for reducing the 
complexity of a fuzzy neural network has been presented. 

The concept of a measure of similarity in fuzzy sets has been 
applied in pattern recognition [13], fuzzy partitioning [l], pattern 
classification [ 141, and the compatibility relation between two fuzzy 
sets [ll]. In these applications, the similarity between two elements 
or between an element and a fuzzy set are concerned in [l], [13]. 
Since the similarity in [2], [ l l ] ,  [14], is related to the relationship 
of two fuzzy sets, it meets the necessity of our research. In [9], Lin 
and Lee presented an algebraic and geometric derivation to provide 
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the FSM (Fuzzy Similarity Measure) in [ 2 ] ,  [ll], [14], with a clear 
mathematical and physical meaning. However, a fuzzy similarity 
measure has yet to be applied to reduce the complexity of a fuzzy 
neural network. 

In this paper, we propose a fuzzy neural network system (FNNS) to 
implement fuzzy inference systems for system modeling. By using the 
fuzzy similarity measure, we derive simple approximate equations for 
calculating the degree of similarity of two fuzzy sets, both with bell- 
shaped membership functions. We present a fuzzy similarity measure 
for fuzzy rules to eliminate redundant fuzzy logical rules. We also 
apply the fuzzy similarity measure to combine similar linguistic terms 
into a single linguistic term to reduce the complexity of the F " S .  
Thus we attempt to produce a simpler fuzzy inference system, with 
fewer fuzzy logical rules, which is more practical and useful in 
industrial applications. Fig. 1 shows a flow chart of the proposed 
F " S  . 

This paper is organized as follows. Section I1 describes the 
structure and learning rules of the FNNS. The similarity measure 
for fuzzy sets and fuzzy rules is stated in Section 111. In Section 
IV, a new on-line method of initializing the FNNS is presented. In 
Section V, an example is shown that demonstrates the capabilities of 
the proposed F " S .  Conclusions are summarized in the last section. 

11. FUZZY NEURAL NEWORK SYSTEM (FNNS) 

The initial network structure adopted in the proposed F " S  is 
shown in Fig. 2. The structure is distinguished by its direct con- 
struction of fuzzy rules without any other adjustment. For example, 
suppose we encounter the j th  fuzzy rule described as follows: 

I F z l  is Ai andxz is& and 

, and zn is A i  THEN y is p3 (1) ... 

where A: and p3 are fuzzy sets in U ,  C R and V C R, respectively, 
and&= (q, . . .  , xn)T E U1x...xUn andy E Varetheinputand 
output of the fuzzy inference system, respectively. A connectionist 
structure based on this fuzzy rule is illustrated in Fig. 3. 

The main advantages of the network structure at the initial time 
are summarized as follows: 

1) The network structure allows us to construct a fuzzy inference 
system rule by rule. In other words, we can implement each 
fuzzy rule without considering the other fuzzy rules. 

2) We can directly incorporate human linguistic descriptions or 
prior expert knowledge (in the form of IF-THEN rules) into 
the network structure. 

3) We do not take an ordinary fuzzy partition of the input space, 
so the number of rules does not increase exponentially with 
the number of inputs. 

4) Elimination of redundant nodes (rule nodes or term nodes) is 
also rule by rule. This means that if we eliminate a rule node, 
then the associated term nodes are also removed. 

On the other hand, the disadvantage of the network structure is 
that it requires a large number of term nodes. As we shown in Fig. 2, 
we require m x n term nodes in layer two for n inputs and m fuzzy 
rules at the initial time. We will apply the fuzzy similarity measure in 
Section I11 to combine similar term nodes corresponding to a fixed 
input linguistic variable 2, and overcome this problem. Hence we 
must emphasize that the F " S  does not keep the initial structure 
after term node combination. 

The class of the fuzzy inference system under consideration is a 
simplified type which uses a singleton to represent the output fuzzy 
set of each fuzzy logical rule. Thus p3 is the consequence singleton 
of the j t h  rule. Let m be the number of fuzzy IF-THEN rules, that is, 
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Fig. 1. Flow chart of the proposed FNNS. 

j = 1, 2, . . . , m in (1). The numerical output of the fuzzy inference 
system with the center average defuzzijier, product inference rule, and 
singleton fuzzij5er is of the following form: 

1 

where p denotes the membership function of fuzzy set A:. This 
simplified fuzzy inference system is proved to be a universal approx- 
imator [16] which is capable of approximating any real continuous 
function to any desired degree of accuracy, provided sufficiently 
many fuzzy logical rules are available. 

4 

A. Layered Operation of the FNNS 

In this subsection, we shall describe the signal propagation and the 
basic function of every node in each layer. We use net; and f; to 
denote the summed net input and activation function of the j th  node, 
respectively, in layer i. Moreover, z; and y3 denote the input and 
output vector of the j th  node in layer i ,  respectively. 
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variance (or width) of the Gaussian function in the jth term node of 
the ith input linguistic variable zp. 

3)  Layer3: This layer implements the links between the term 
nodes and the rule nodes. Nodes in this layer perform the product 
operation. Thus, for the j t h  rule node 

?7 

net; = IT x: rule 
z 

node and 
2/33 = f,”(net,”) = net;. 

4)  Layer4: This layer performs the COA (Center Of Area) de- 
fuzzification to obtain numerical outputs. The connection weight w:, 
between the ith rule node and the j th  output node represents the 
consequence fuzzy singleton. The node operations are 

node ... ... 

I X1 xz ... xn-1 x n  

Fig. 3 .  Construction of the j th  rule of the FNNS’s network structure. 

I )  Layer I :  For the j t h  node of layer one, the net input and the 
net output are 

1 1  net,  =x, = x, 
and 

y; = f,’(net;) = net:. 

2 )  L a y e r 2  In this layer, each node performs a membership 
function. The Gaussian function, a particular example of radial basis 
functions, is adopted here as the membership function. Then 

and 

where m2, and U,, are, respectively, the mean (or center) and the 

m 

and 

2=1 z = 1  

where the Link weight wz“, is the output action strength of the j t h  
output associated with the ith rule. 

B. Supervised Gradient Descent Learning of the FNNS 
The adjusted parameters in the network structure of the FNNS can 

be divided into two categories based on the IF (premise) part and 
THEN (consequence) part of the fuzzy rules. In the premise part 
we are asked to fine tune the mean and variance of the Gaussian 
functions. In the consequence part, the adjusted parameters are the 
consequence weights. 

Once the FNNS has been initialized, a gradient descent-based back- 
propagation algorithm (BP) [15] is employed to adjust the parameters 
of the fuzzy neural network by using the training patterns. The main 
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goal of supervised learning is to minimize the error function 

p 1  E = - (dg - Y:)~ 2 
,=1 

where y," is the current output of the j t h  output node and d: is the 
desired output. If w2, is the adjusted parameter, then the learning 
rule used is 

and 

Awt, ( t )  = ~ 2 3  ( t )  - wtJ (t - 1) (3) 

where q is the learning rate and a, between 0 and 1, is the momentum 
parameter. By recursive applications of the chain rule, the error term 
for each layer is first calculated. The adaptation of weights of the 
corresponding layer is then given. Next, we will begin to derive the 
learning law for each layer in the feedbackward direction. 

1 )  Layer 4: The error term to be propagated is given by the j t h  
output node, as follows: 

513 
i = l  

where the subscript k denotes all the rule nodes connected to the j t h  
term node of input variable 2%.  In fact, before we use the similarity 
measure for term node combination, (4) can be simplified as 

6% = 6: . y," 
for the initial network structure of the F"S. We can continue to 
derive 

d E  d E  - 
am2, amz, 

Similarly, the adaptive rule of ut, is derived as follows: 

8 E  d E  ay;, - 
dut, dY/E dot3 

Thus the update rules for m2, and ut, are 

Then we can derive 
d E  d E  ay; dnet; 
dw:, ay: dnet: dw:, 

- 

4 3  = 6, yz . 
Hence, by (3), the consequence weights are updated by 

d 3 ( t  + 1) = w?,(t) + rlS;(t)Y:(t) + aAw;?3(t). 

2 )  Layer 3: Only the error signals 62 need to be computed and 
propagated since there is no weight adjustment in this layer. The 
error term 62 is derived as follows: 

k=l 

where p is the number of output nodes. 

First, the error term is computed: 
3) Layer 2: The multiplication operation is done in this layer. 

- d E  - - d E  aye 62 -- ___- 
23 - d n e t e  dyz", dnet:, 

- 

and 

(4) 

111. SIMILARITY MEASURE FOR FUZZY SETS AND FUZZY RULES 
Once supervised learning using the BP algorithm is finished, we 

may find that some of the fuzzy sets in layer 2 are almost the same. 
In other words, some term sets of the corresponding universe of 
discourse have a high degree of similarity. Term sets with a high 
degree of similarity can be combined into a single term set, that is, 
they can share a common term node. We can use the following fuzzy 
similarity measure [2], [9], to check the degree of similarity of two 
fuzzy sets: 

Degree(A1 = Az) = E(A1, A z )  

where f l  and U denote the intersection and union of fuzzy sets 
A1 and A2, respectively. M ( . )  is the size of a fuzzy set and 
0 I E(Ai ,  Az) 5 1. 

From (5), we see that the computation of the similarity of two 
fuzzy sets requires calculating the size of intersection and union of 
two Gaussian membership functions. For any two fuzzy sets A1 and 
Az, M(A1 LI A2) can be easily derived as follows: 

M ( A 1 )  + M(Az)  
- M ( A i  n A 2 ) .  

M(A1 U A z )  
(6) 

Calculating the size of the intersection of two Gaussian membership 
functions, however, is very complex because of the nonlinear shape of 
Gaussian functions. To make the computation of (5) feasible, we can 
use a tent function to approximate a Gaussian function. A Gaussian 
membership function with center m and width U can be approximated 
by using a triangular membership function with center m and width 
U& [9], that is 
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(c) (d) 

Fig 4 
(c) two membership functions have two intersection points, (SI, h l ) ,  and (sz, hZ), (d) AI n -42 = 0 

Similarity measure of two triangular fuzzy sets, A1 and A2 (a) A2 C A i ,  (b) two membership functions have an intersection point, (SI, h i ) ,  

Thus, the similarity measure of two fuzzy sets in the FNNS can be 
directly applied by using the approximation equations described in 
the next section. 

A. Approximation Equations for the Similarity Measure 
We consider the similarity measure in four different cases based 

on the triangular membership functions. Fig. 4(a)-(d) show the four 
cases under consideration. The fuzzy sets are denoted by A1 and Az,  
with the corresponding centers, ml and m2, and widths cl and 0 2 ,  

respectively. We will derive the similarity of these two fuzzy sets 
case by case. It is noted that we consider ml > m2 in cases (ii)-(iv). 
If ml < m2, then switch ml and mz, and g1 and cz. 

Case (i): ml = m2 and c q  2 02:  In this case, these two mem- 

(m2 - ml)  + (CL + ax)& 
(a1 + f l z ) 2 / ; ;  

hi = 

Substituting (6) and (9) into (5), we obtain 

bership functions have the same center and no intersection point [see 
Fig. 4(a)]. Using (5) and (6), we can derive the similarity measure 
as follows: 

Case (iii): ml - mz 5 le2 - all& and mi > mz: There are 
two situations (TI 5 e2 and a1 > 5 2  in this case. For brevity, 
we only consider e1 5 02 in the following derivation. As we see 
in Fig. 4(c), these two membership functions have two intersection 
points at ( S I ,  h l )  and ( S Z ,  h2). The size of A1 n A2 is derived 
as follows: 

M(A1 n Az) = M ( A z ) ,  
M(A1 U Az)  = M(A1) + M(Az)  

thus 

From (8), we can see that the degree of similarity of AI and A2 
is just the ratio of 0 2  to 0-1. In a particular case, if CTI = 02 then 
E(A1, A z )  = 1, i.e., AI = Az. 
Case(ii): (m-g2(2/;;<ml-m2 < e l + e z ) J ; ; a n d m l  >mz: 

In this case, these two membership functions have an intersection 
point at (SI, h l )  [see Fig. 4(b)]. The size of A1 n AZ is derived as 
follows: and 
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(a) (b) (c) 

Fig. 5. 
sets have single intersection point; and (c) two fuzzy sets have two intersection points. 

Combination (solid line) of two fuzzy sets (dotted line) with high degree of similarity measure: (a) one is the subset of the other; (b) two fuzzy 

Substituting (6) and (11) into (5), we obtain 

E(AI,  Az) 1 

(12) 
C l h l  + C 2 h 2  + C 3 h 3  

2(@l + m ) f i  - ( C l h l  + C 2 h 2  + C 3 h 3 ) '  

We note that only slight modification of these above equations is 
needed to derive the equations when (TI > U Z .  

this 
case, these two membership functions have no intersection as shown 
in Fig. 4(d). Thus 

Case (iv). ml - m2 > ((TI + m)f i  and mi > m2: In 

M(A1 n Az) = 0 
and 

On the basis of the above discussion, we can easily calculate 
the degree of similarity of two fuzzy sets. Whether the degree 
of similarity of two fuzzy sets is high enough will depend on a 
reference value provided by the user. With a given reference value 
ys, 0 < ys 5 1, if E(A1, A2) 2 ys, then we can combine AI 
and A2 into a new fuzzy set A,,, . There is no standard method for 
determining A,,,. We try to determine A,,, in the following. We 
note that since no combination will occur in case (d) for zero degree 
of similarity, thus only three cases are considered below. 

Case (i). 

mne, =ml or m2 (15) 
and 

01 + @2 
@new = ~ 2 '  

Case (ii). 

Case (iii). 

and 

Fig. 5 illustrates the combination of these three cases. 

B. Similarity Measure of Fuzzy Rules 
In Section 111-A, the similarity measure for fuzzy sets can reduce 

the number of term nodes. However, we also wish to reduce the 
number of rules. To reduce the number of rule nodes, we must 
eliminate fuzzy rules of little influence and combine similar fuzzy 
rules into an equivalent fuzzy rule. The former is referred to as 
rule elimination; the latter is rule combination. In this subsection, 
we attempt to combine rules by using a similarity measure. 

To determine whether two fuzzy rules are similar, we must evaluate 
the degree of similarity of the fuzzy rules. With the proposed F"S,  
more specifically, we need to calculate the degree of similarity of both 
the consequences and preconditions. For simplicity, we consider the 
FNNS to be used for an MIS0 case. We will describe the similarity 
measure for the fuzzy rules described below: 

R'": IF z1 is A: and x2 is A," 

and . .  . and r ,  is A: THEN y is D k  
IF z1 is A: and x2 is A; 
and . . . and z, is A: THEN y is Dl 

R' : 

where Rk and Ri represent the k th  and the Zth fuzzy rules, respec- 
tively. 

I) Similarity Measure for Consequences: In the proposed F"S, 
the consequences of the fuzzy rules are represented as connection 
weights. To calculate the degree of similarity of two consequence 
weights Bk and P', we should define a fuzzy set A,. Then the 
similarity measure for P k  and Pi can be characterized as follows: 

where P A ,  ( p k  - 0') is the degree of similarity of 
0 < yc 5 1, is a reference value determined by the user. 

function as shown below: 

and pl and yc, 

In the FNNS, the membership function of A, is a triangular 

where Pmax and Pmln are the maximum and minimum consequence 
weights in the training result of the FNNS, respectively. 

2 )  Similarity Measure for Preconditions: With the kth fuzzy rule, 
the corresponding preconditions are A!, Ai ,  . . ., and A:. Similarly, 
the corresponding preconditions of the Ith fuzzy rule are Ai,  Ai,  . . ., 
and AL. To calculate the degree of similarity of the preconditions 
of these two fuzzy rules, we must check the degree of similarity 
of every fuzzy set pair, i.e., we have to check E ( A f ,  A : ) ,  for 
i = 1, ... , n. Thus, the similarity measure of the preconditions 
(E,) can be characterized as follows: 
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where 
Ak = [A:, A;, . .  . , A:] 

and 

Once Ep(Ak, A') reaches a reference value T ~ ,  0 < ^~r, 5 1, then 
all of these fuzzy set pairs are considered to be very similar. This is 
the reason why we employ the min operation on (23). 

Based on the discussion in (1) and (Z), the similarity measure of 
the fuzzy rules is defined as 

E ~ ( R ' ,  R ~ )  = E,(@, p'). E ~ ( A ~ , A ~ ) .  (24) 

The user is asked to set a reference value yr. 0 < ?;. 5 1, in the 
FNNS. Then any two fuzzy rules Rk and R' with E,(Rk, R')  2 yr 
can be combined into a new fuzzy rule R""". In other words, the rule 
combination can be applied for any two fuzzy rules if the following 
conditions are satisfied. 

1) E,  = 1, i.e., the two fuzzy rules have almost the same 
consequence weight. 

2) Ep 2 yT, i.e., the degree of similarity of the preconditions 
must be high enough. 

Once R""" is taken to replace both Rk and R f ,  then the corre- 
sponding term nodes Rk and Rl will be eliminated, The term nodes 
of R""" can be directly obtained by using the combination method 
of fuzzy sets presented in Section 111-A, i.e., A:'"'' is the fuzzy set 
combination of A,k and Af for i = 1, . . . , n. On the other hand, if 
yc is high enough, then the consequence weight PILeW of R""" can 
be simply chosen as pnew = (p i  + p k ) ) / 2 .  

If the F " S  is used in an n-input'p-output case, the combination 
of two fuzzy rules is individually considered for each output. First, we 
check condition (1) for each output. Assume condition (1) is satisfied 
for all of the outputs, i.e., 

k 1  
Ec(P, , P,) = 1, v3, 3 = 1, " .  3 P, 

where ,Of and represent the kth and the Zth consequences of the 
j t h  output node, respectively. Then, we calculate Ep(Ak, A') for 
the fuzzy rules. If Ep is greater than the reference value -yr, then Rk 
and R1 are combined with the new consequence 

With the combination of preconditions, the methods used in the MIS0 
case can be directly applied here. 

IV. A NEW ON-LINE INITIALIZATION METHOD 

As mentioned in Section 11, the initial structure of FNNS does not 
take an ordmary fuzzy partitlon of the input space. Therefore, how 
to choose the initial parameters of the FNNS becomes an important 
problem. We find in practical simulations that the determination of 
initial parameters will seriously affect the FWNS's performance of 
learning convergence. In this section, we try to develop a new on-line 
initialization method to improve the performance of the FNNS. 

Since the parameters of the FNNS have a clear relationship with 
the input-output data, the initial FNNS can be constructed as a good 
approximation of an unknown function based on the input-output 
data. In the on-line initialization method, the initialization takes place 
immediately after each training pattern is presented. We do not start 
the back-propagation training algorithm in Section 11-B for the first 
m, the default fuzzy rule number, time points. Suppose, at instant J ,  

1 5 j 5 m ,  a training pattern [ZI ( j ) ,  . . , zn ( 3 ) ;  y(3)] is presented 
We can directly set the parameters 

PJ  =y(.?) (25) 
and 

mZ3 = z % ( J ) ,  1 5 i 5 n. (26) 

In this way, when m training patterns are presented, we can obtain 
m consequence weights (p3, j = 1, ' . . , m) and the centers for the 
input fuzzy sets (AI, j = 1, . . . , m).  

The remaining problem is how to determine the corresponding 
width (ozJ)  for AS, this is also the main problem in the on-line 
initialization method. Though we can match the first m training pairs 
quite well by choosing uZ3 to be sufficiently small, we will have large 
approximation errors for other input-output pairs [16]. Therefore, the 
reasonable choice of g C 3  should make the input membership functions 
cover the input range in a good way. Moreover, the method in [16] 
results in a fixed value of uZ3 once the first m training pairs are fed 
into the fuzzy neural network. We expect to obtain a more flexible 
result to satisfy our requirements. 

In the fuzzy neural network systems [3], [4], [17], the initial value 
of parameters can be easily set in such a way that the membership 
functions are equally spaced along the operating range of each 
input variable. Then these membership functions will satisfy E- 

completeness [7], which means that given a value x of one of the 
inputs in the operating range, we can always find a linguistic label 
A such that ~ A ( z )  2 E .  In this manner, the fuzzy inference system 
can provide smooth transition and sufficient overlapping from one 
Linguistic label to another. It is especially mentioned that if the E- 

completeness condition is not satisfied, there may be no fuzzy rules 
fired when the input data is fed into the fuzzy neural network. Thus 
we expect to present a flexible method to properly choose u23 such 
that the input membership functions can satisfy €-completeness. 

Before going further to show the choice and characteristic of ut?, 
we introduce the following notation. We note that the following 
notation is based on a fixed k or A:, 1 5 k 5 m. 

1) A:: the fuzzy set which is on the right side of A: and is 

2) A:: the fuzzy set which is on the left side of A: and is closest 

3) m z ~ :  the corresponding center of A:. 
4) m l ~ :  the corresponding center of A:. 
5) A*, ,-: the righted fuzzy set in AI, J = 1, . . . , m. 
6) A z , f :  the leftest fuzzy set in Ai ,  j = 1, . . .  , m. 
7) m,,r: the corresponding center of A t , r ,  
8) m z ,  I :  the corresponding center of At,  1 .  

Let X ,  denote the universe of discourse of the input zz, we can 
also treat fuzzy sets Ai ,  for j = 1 to m, as fuzzy numbers defined in 
X,.IntheF"NS,weletAi=(A~,A~, ... , A7)beasemi-closed 
fuzzy set [lo], i.e., a fuzzy set with 

closest to A:. 

to A!. 

P A , , , ( G )  = 1, xz E Xz and Z~ 2 mz, r  (27) 

P A ~ , ~ ( G )  = 1, zz  E X, and zz 5 m , i .  (28)  

and 

The special choice for ut3 is 

where A, is the overlapping factor, 0 < A, < 1. We now show by 
choosing ut3 this way, the membership functions of the linguistic 
labels Ai ,  j = 1, . . . , m will cover X, with a good property. 
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Theorem 4.1: The semi-closed fuzzy set Ai = 
(A:,  A:, . . . , A T ) ,  where each linguistic label A: has a 
Gaussian membership function constructed by the preceding initial 
mt3 [see (26)] and ct3 [see (29)], will satisfy 6-completeness. That is, 

for all zz E X ,  

there exists 

such that p A k ( z 2 )  2 E = A, 

k E 1, 2, ... , m 

where A,, 0 < A, < 1, is the overlapping factor. 

theorem under several different cases as shown below. 
Pro08 According to the location of x2 in X , ,  we can prove this 

If x, 2 mz,r ,  then by applying (27), we have 

P A , , , ( z t )  = 1 2 At .  

If z, 5 mz,l, then by applying (28), we have 

PA,,1(zt) = 1 2 At .  

If there exists k E 1, 2, ' * .  , m, such that m e k  5 xt 5 mzR 
and J m z k  - mlR( 2 I m z k  - mzLI, then we have 

lmzk - mzRl 

m @ , k  = 

in this case. By using the Gaussian membership function, we 
can continue to obtain 

PA," ( z z )  2 P A !  (mtR) 

=A, .  

If there exists IC E 1, 2, . . .  , m, such that mzL 5 xt 5 mzk 

and Jmzk - m e ~ l  2 Jmzk - m , ~ ( ,  then c c k  is the same as 
shown in case (3). Thus we have 

PA," ( 2 2 )  L PA," ( m z L )  

=A, .  

The proof for the other cases induced by l m z k  - mzRl < 
l m z k  - m z ~ l  is very similar to case (3)  or case (4). so, we 
omit the process and complete this proof. 0 

Though we can incorporate prior expert information to do better 
initial parameter-choosing of the FNNS, we finally gave up this 
attempt, because we believed that the proposed on-line initialization 
method is efficient and sufficient in practical applications. In fact, 
based on our simulation results in the next section, this is indeed 
true. 

V. AN ILLUSTRATIVE EXAMPLE 
In this example [12], the plant to be identified is described by the 

second-order difference equation 

Y(IC + 1) = f [Y(k), Y(k - 1)1+ 4 k )  

where the unknown function f has the form 

A series-parallel type of identifier [12], implemented by the F"S, 
is described by the equation 

f (k  + 1) = A Y ( %  Y(IC - 1)1 + U @ ) ,  

where & ( I C ) ,  y(k - l ) ]  is in the form of (2) with m = 40 (number 
of initial rules) and n = 2. The input u ( k )  was assumed to be a 
random signal uniformly distributed in the interval [-2, 21. 

First, the initial parameters of the F"S are obtained by applying 
the on-line initialization method with the first 40 data points. The 
overlapping factors, A, = 0.7 for i = 1-2, are chosen to set up the 
corresponding variance of the Gaussian membership functions. The 
parameters of the initial rules are illustrated in Table I, where G(a, b )  
is a Gaussian fuzzy set with mean a and variance b .  For IC > 40, the 
parameters in the F"S are adjusted at every instant of time using 
a learning rate of q = 0.1 and a momentum parameter of a = 0.75. 
Suppose one epoch of learning takes 200 time points, the supervised 
learning is continued for 200 epochs of training and the mean square 
errors are computed over 200 training steps, i.e., 

200t+240 

for i = 0, 1, . . . , 199. 

The rules obtained after 200 epochs of learning are listed in Table 
11. Since we think that the parallel model [ 121 is more reasonable for 
testing the performance of an identifier, we use the parallel model 
to test the F"S.  In Fig. 6, the outputs of the plant as well as the 
F"S for an input u(k) = sin (27rk /25)  are shown and are seen to 
be indistinguishable. 

The similarity measure was applied to the input fuzzy sets obtained 
in the preceding process to combine the similar fuzzy rules and term 
nodes. Table I11 shows the number of rules after rule combination 
under reference values y. = 0.9 and y. = 0.9, * . . , 0.1. As shown 
in Table 111, for a fixed value of yc, a smaller value of yT will 
generally combine more fuzzy rules. Especially, we found that the 
number of rules was greatly reduced from 40-22 when yr = 0.1. 
To show the feasibility of doing rule combination by the proposed 
similarity measure for fuzzy rules, we take yT = 0.1 as an example 
in the following process. The rules after rule combination are listed 
in Table IV. We find that the rules marked with the symbol "+" (A, 
0, etc.) in Table I1 have been combined into a single rule shown in 
Table IV. Furthermore, the reference value of the similarity degree 
ys was set for term node combination. Table V shows the number of 
term nodes after term node combination under different values of ys. 
For brevity, Yet us only consider ys = 0.4 in the following simulation 
and comparison. 

The final rules are shown in Table VI after supervised learning is 
applied again for 100 epochs of learning. In fact, the time consumed 
for training the F " S  again can be greatly reduced if we choose 
larger values of yc, Y ~ ,  and y.. In Table VI, the term sets marked 
with the symbol "+" (A, 0, etc.) have been combined into a single 
term node that is not labeled as "- -." Also, in Table VI, some term 
sets with extremely large width (variance) will be eliminated and are 
labeled as "**." Since the membership grades of the corresponding 
input according to those term sets always approach to unity. Thus, 
those term sets are referred to as redundant term sets, which can 
hardly affeci the results of rule reasoning. The outputs of the system 
and the F"S with the final fuzzy rules are shown in Fig. 7. As 
shown in Fig. 7, the result is still desirable. 

in [12] had two hidden 
layers with 20 and 10 neurons in each layer respectively; hence, the 
neural identifier had 250 (= 2 x 20 + 20 x 10 + 10) adjustable 
parameters. However, the number of adjustable parameters in the 
F"S is only 200 (= 40 x 2 x 2 + 40) at the initial time and 84 

The neural network identifier N,", 2 0 ,  
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No. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19  

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

- - 

TABLE I 
INITIAL FUZZY RULES 

Y (k) 

G(O.OO,O.O5) 

G(0.38,0.04) 

G(0.92,0.26) 

G( 0.32,0.04) 

G(0.29,0.02) 

G(-1.70,0.28) 

G(-0.14,0.32) 

G( -1.22,0.08) 

G(1.82,0.12) 

G(-2.37,O.ll) 

G( -0.69,0.04) 

G( 2.04,0.35) 

G(-1.92,0.18) 

G(-0.64,0.32) 

G(2.02,0.12) 

G(0.50,0.08) 

G(0.27,0.12) 

G(1.42,0.07) 

G(0.65,0.07) 

G(-0.79,0.04) 

G(0.46,0.04) 

G( -1.09,0.14) 

G(-1.27,0.28) 

G( -0.07,0.04) 

G( 1.54,0.07) 

G(0.64,0.08) 

G( -0.87,0,14) 

G(-2.20,0.18) 

G(1.81,0.15) 

G(0.08,0.12) 

G(-1.26,0.02) 

G(-0.09,0.03) 

G(-0.76,0.04) 

G( -0 78.0.01) 

G(1.32,0.26) 

G( 0.76,O. 10) 

G(1.58,0.15) 

G(2.03,O.Ol) 

G(2.57,0.44) 

G(3.25,0.44) 

Y(k-1) 

G(O.OO,O.O5) 

G(O.OO,O.O5) 

G(0.38,0.04) 

G(0.92,0.26) 

G(0.32,0.04) 

G(0.29,0.02) 

G(-1.70,0.28) 

G(-0.14,0.32) 

G(-1.22,0.08) 

G( 1.82,O.lZ) 

G( -2.37,O.ll) 

G(-0.69,0.04) 

G(2.04,0.35) 

G( - 1.92,0.18) 

G(-0.64,0.32) 

G(2.02,0.12) 

G(0.50,O.OS) 

G(0.27,0.12) 

G(1.42,0.07) 

G(0.65,0.07) 

G( -0.79,0.04) 

G(0.46,0.04) 

G(-1.09,0.14) 

G(-1.27,0.28) 

G( -0.07,0.04) 

G(1.54,0.07) 

G(0.64,0.08) 

G( -0.87,0.14) 

G(-2.20,0.18) 

G(1.81,0.15) 

G(0.08,0.12) 

G(-1.26,0.02) 

G( -0.09,0.03) 

G(-0.76,0.04) 

G(-0.78,O.Ol) 

G(1.32,0.26) 

G(0.76,O.lO) 

G(1.58,0.15) 

G(2.03,O.Ol) 

G(2.57,0.35) 

Y(kS1) 

0.38 

0.92 

0.32 

0.29 

-1.70 

-0.14 

-1.22 

1.82 

-2.37 

-0.69 

2.04 

-1.92 

-0.64 

2.02 

0.50 

0.27 

1.42 

0.65 

-0.79 

0.46 

-1.09 

-1.27 

-0.07 

1.54 

0.64 

-0.87 

-2.20 

1.81 

0.08 

-1.26 

-0.09 

-0.76 

-0.78 

1.32 

0.76 

1.58 

2.03 

2.57 

3.25 

3.03 

[= (15 + 16) x 2 + 221 at the final time. Consequently, from a system 

No * 

a 1  
2 

Q 3  

4 

5 

A 6  

a 7  

0 8  

0 9  

10 

h 11 

12 

a 13 

4 14 

0 15  

16 

A 17 

18 

A 19  

A 20 

21 

22 

0 23 

1, 24 

A 25 

$ 26 

0 27 

0 28 

29 

30 

A 31 

32 

33 

4 34 

a 35 

h 36 

* 37 

38 

$ 39 

40 

TABLE I1 
THE RULES AFTER SUPERVISED LEARNING 

Y (k) 

G(0.65,0.29) 

G(0.19,0.08) 

G(1.12,0.34) 

G(0.28,0.03) 

G(0.09,0.02) 

G(-1.69,0.27) 

G(-0.33,0.72) 

G(-1.37,1.94) 

G(1.08,0.71) 

G(-2.81,1.07) 

G(-1.72,20.60) 

G(2.15,1.46) 

G( -1.76,0.38) 

G( -O.56,0.45) 

G(2.87,5.07) 

G(0.43,0.16) 

G(0.67,0.63) 

G(13.14,1626.50) 

G(0.46,3.03) 

G(  -0.81,0.19) 

G(0.49,O.OS) 

G(-1.15,0.27) 

G(-1.39,0.22) 

G(-0.78,1.21) 

G(1.34,0.59) 

G(2.18,1.14) 

G( -0.96,1.43) 

G(-2.32,0.17) 

G(1.51,Q.ZO) 

G(-0.25,18.02) 

G( -0.64'0.94) 

G(-O.lI, 0.02) 

G(-0.79,O.Ol) 

G(-0.75,0.16) 

G( 1.36,4.00) 

G(-1.97,26.91) 

G(1.27,0.99) 

G(-0.57,1323.60) 

G(3.37,0.43) 

G(4.63,2.67) 

G(0.03,0.13) 

G(0.06,O.lO) 

G(0.24,0.27) 

G(0.88,0.20) 

G(0.38,0.04) 

G(0.33,O.OO) 

G(-1.84,0.53) 

G(-0.41,0.23) 

G(-0.80,0.77) 

G(1.53,22.14) 

G(-2.07,0.99) 

G(-1.85,1.67) 

G(2.13,0.41) 

G(-1.65,0.91) 

G(-0.72,1.35) 

G(2.10,0.19) 

G(0.57,0.49) 

G(19.88,1661.62) 

G(1.34,2.50) 

G(0.20,1.99) 

G( -0.79,0.08) 

G(0.55,0.12) 

G(-0.74,0.25) 

G(-l.O0,1.32) 

G(0.07,1.44) 

G(1.74,1.71) 

G(1.50,1.36) 

G(-0.86,0.16) 

G( -2.58,O.Ol) 

G(0.78,57.50) 

G(0.60,0.56) 

G(-l . l9,0.03) 

G(-0.23,0.03) 

G(-0.83,0.13) 

G(-0.41,1.08) 

G(0.20,2.25) 

G(1.01,1.02) 

G(l.lO, 1.71) 

G(2.76,14.13) 

G(3.10,3.36) 

y ( k t 1 )  

0.26 

0.74 

1.02 

0.42 

-1.52 

-0.13 

-0.85 

0.41 

-3.03 

0.06 

0.59 

-9.67 

-0.57 

1.19 

-3.72 

0.32 

2.30 

-0.29 

-0.05 

-0.17 

-1.06 

-0.29 

0.29 

5.10 

0.21 

4.92 

-5.12 

1.23 

-1.25 

0.56 

-1.76 

-0.68 

-0.65 

1.25 

-0.06 

-1.12 

5.25 

2.61 

2.94 

10.56 

the F " S  model is much simpler than the neural network in [12]. 
complexity point of view (in the sense of number of free parameters), Table VI1 summarizes these comparisons. 

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 12, 2009 at 02:13 from IEEE Xplore.  Restrictions apply.



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART B: CYBERNETICS, VOL. 26, NO. 2, APRIL 1996 

I 
0 9  0 8  0 7  0 6  0 5  0 4  0 3  0 2  0 1  

Number of term nodes for y(k) 20 20 19 18 17 15 13 11 8 

Number of term nodes for y(k- 1) 21 21 20 18 18 16 13 12 11 

7. 

353 

77 

-2 - 
0 10 20 30 40 so 60 i o  d m  

T i m  

Fig. 6 .  Outputs of the original system and the FNNS (under fuzzy rules 
after 200 epochs of learning). 

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 

TABLE I11 
NUMBER OF RULES AFTER RULE COMBINATION (rc = 0.9) 

No. 

A 1  

2 

3 

4 

0 5  

0 6  

7 

t l 8  

9 

4 10 

11 

12 

13 

14 

4 15 

t 16 

17 

18 

19 

20 

21 

22 

TABLE IV 
THE RULES AFTER RULE COMBINATION 

~ ~~ 

Y (k) 

G(-0.27,1.02) 

G(0.19,0.08) 

G(0.28,0.03) 

G(0.09,0.02) 

G( -1.69,0.27) 

G(1.79,2.99) 

G(-2.81,1.07) 

G(-1.85,23.76) 

G(2.15,1.46) 

G( -1.76,0.38) 

G(0.43,0.16) 

G(13.14,1626.50) 

G(0.49,0.08) 

G(-1.15,0.27) 

G(0.04,1.68) 

G(2.77,0.79) 

G(1.51,0.20) 

G(-0.25,18.02) 

G(-O.lI,O.O2) 

G(-0.79,O.Ol) 

G( -0.57,1323.60) 

G(4.63,2.67) 

Y(k-1) 

G(-0.55,0.92) 

G(O.06,O.lO) 

G(0.88,0.20) 

G(0.38,0.04) 

G(0.33,O.OO) 

G(0.63,1.85) 

G(1.53,22.14) 

G(0.18,2.26) 

G(-1.85,1.67) 

G(2.13,0.41) 

G(2.10,0.19) 

G(19.88,1661.62) 

G(-0.79,O.OS) 

G(0.55,0.12) 

G(-0.26,1.74) 

C;(2.25,7.92) 

G( -2.58,O.Ol) 

G(0.78,57.50) 

G(-1.19,0.03) 

G( -0.23,0.03) 

G(1.10,1.71) 

5(3.10,3.36) 

Y(k+l) 

0.69 

0.74 

0.42 

-1.52 

-0.13 

-4.25 

0.06 

-0.26 

-9.67 

-0.57 

0.32 

-0.29 

-1.06 

-0.29 

5.17 

3.93 

-1.25 

0.56 

-0.68 

-0.65 

2.61 

10.56 

VI. CONCLUSION 
In this paper, a fuzzy neural network system called the F ” S  has 

been presented for implementing fuzzy inference systems. The main 
purpose of the FNNS is to produce a simpler fuzzy inference system, 
with fewer fuzzy logical rules and adjustable parameters, which will 

TABLE VI 
FINAL FUZZY RULES - 

No. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17  

18 

19 

20 

21 

22 

- - 
4 G(-0.84,1.22) 

G(1.02,0.86) 

G(0.01,6.35) 

G(-0.92,1.46) 

A G(-1.77,0.99) 

4 G(2.49,1.79) 

G(-3.74,0.22) 

U G(-1.50,20.78) 

4 -- 
A -- 
0 G(1.15,1.17) 

0 ** 
0 -- 

G(-0.63,0.72) 

4 -- 
G(1.92,l.B) 

G(0.60,67.36) 

U -- 
G(0.13,6.22) 

G(-0.77,21.48) 

a -- 
G(5.35,3.59) 

y(k-1) 

4 G(-1.55,1.48) 

G(0.83,0.83) 

G(-0.73,26.07) 

G(2.21,2.52) 

G(0.26,1.45) 

4 G(-1.41,1.57) 

G(1.54,22.14) 

4 -- 
G(-2.47,1.81) 

A G(4.12,1.43) 

A -- 
** 
G(-0.92,0.89) 

G(0.73,O.SO) 

4 -- 
9 G(3.76,4.02) 

G(-3.08,0.78) 

G(0.77,57.49) 

G(-1.91,0.71) 

G(-0.75,32.93) 

4 -- 
0 -- 

Y(k+l) 

1.37 

2.96 

0.92 

-4.57 

-0.57 

-6.79 

1.06 

-2.52 

-12.68 

-0.49 

-3.17 

-0.00 

-4.62 

-2.19 

5.86 

4.97 

-0.56 

0.56 

-0.98 

0.16 

0.28 

14.32 

J 
0 10 2.0 30 40 50 60 70 80 90 1M) 

Time 

Fig. 7. Outputs of the original system and the FNSS (under final fuzzy rules). 

be more efficient and useful in practical applications. In order to 
accomplish this purpose, we propose a fuzzy similarity measure for 
fuzzy rules to eliminate redundant fuzzy logical rules. Hence the 
complexity of a fuzzy neural network or a fuzzy inference system 
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Model Name 

Narendra etc [12] 

L X Wang[lG] 

proposed FNNS 

Final Number of Rules Final Number of Parameters 

Ni1*0,10.1 250 

40 200 

22 84 

can be reduced. A measure of the similarity for fuzzy sets, which 
indicates the degree to which two fuzzy sets are equal, is also applied 
to combine similar input linguistic term nodes of a fuzzy neural 
network. This greatly reduces the number of adjustable parameters. 
We also derive a new and effective on-line initialization method for 
choosing the initial parameters of the FNNS. A computer simulation 
has been presented to illustrate the procedure of the proposed FNNS. 
The simulation shows that the FNNS indeed yields simpler and more 
efficient results. 
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A Dynamic Gesture Recognition System 
for the Korean Sign Language (KSL) 

Jong-Sung Kim, Won Jang, and Zeungnam Bien 

Abstracb-The sign language is a method of communication for the 
deaf-mute. Articulated gestures and postures of hands and fingers are 
commonly used for the sign language. This paper presents a system 
which recognizes the Korean Sign Language (KSL) and translates into a 
normal Korean text. A pair of Data-Gloves are used as the sensing device 
for detecting motions of hands and fingers. For efficient recognition of 
gestures and postures, a technique of efficient classification of motions is 
proposed and a fuzzy min-max neural network [4] is adopted for on-line 
pattern recognition. 

I. INTRODUCTION 
Gestures and postures have been used as a means of communication 

among people for a long time, being interpreted as streams of tokens 
for a language [l]. They may vary from the stylized lexicon of a 
traffic cop to the highly developed syntax of a natural language such 
as the sign language. 

The sign language is a method of communication for the deaf-mute. 
It is understood by means of gestures of both hands and fingers [2]. 

This paper deals with a system which recognizes the Korean Sign 
Language (KSL) and translates it into a normal Korean text. 

According to a standard KSL dictionary, the 45-year-old Korean 
Sign Language contains about 6 000 vocabulary words. However, 
they are formed by combining a relatively small number of basic 
gestures. Moreover, two types of gestures of hands and fingers are 
used: one type consists of stabc postures and the other is dynamic 
gestures. The former consists of 31 distinct postures expressing the 
dactylology while the latter is made up with changing patterns, 
constituting the main body of the KSL and expressing different 
meanings of vocabulary words. 

One may extract features of static postures of 10 fingers by 
identifying and recognizing the dactylology in the space domain. 
On the other hand, the recognition of changing patterns of dynamic 
gestures in the time domain is essential to understand any KSL-based 
sentences. This means that the recognition of the KSL should be 
conducted in real-time. For our system, an electronic device, called 
Data Glove [3], is adopted as an input device in consideration of cost 
effectiveness of hardware versus real-time processing capability. It is 
remarked that, in case that an 8-bit gray level vision system is adopted 
as an input sensing device, the system is required to handle at least 8 
Mb/s while, in case of Data Glove, the device needs to handle about 
600 b/s. It is also known that the pattern classes of KSL gestures 
are not linearly separable and that patterns tend to overlap with each 
other. Therefore, it is desirable to design a pattern classifier in such 
a way that the amount of mis-classification for those overlapping 
classes is minimum. Also, the system needs some form of learning 
capability due to the varying nature of the patterns to handle. 

It is remarked that in [6] and [7] ,  neural network based methods 
were presented for recognition of the American Sign Language 
(ASL). In the work by Fe1 [6] were used the back-propagation 
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