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Abstract. 

Traditional methods of association rule mining consider the appearance of an 

item in a transaction, whether or not it is purchased, as a binary variable. However, 

customers may purchase more than one of the same item, and the unit cost may vary 

among items. Utility mining, a generalized form of the share mining model, attempts 

to overcome this problem. Since the Apriori pruning strategy cannot identify high 

utility itemsets, developing an efficient algorithm is crucial for utility mining. This 

study proposes the Isolated Items Discarding Strategy (IIDS), which can be applied 

to any existing level-wise utility mining method to reduce candidates and to improve 

performance. The most efficient known models for share mining are ShFSM and 

DCG, which also work adequately for utility mining as well. By applying IIDS to 

ShFSM and DCG, the two methods FUM and DCG+ were implemented, 

respectively. For both synthetic and real datasets, experimental results reveal that 

the performance of FUM and DCG+ is more efficient than that of ShFSM and DCG, 

respectively. Therefore, IIDS is an effective strategy for utility mining. 
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1. Introduction  

The development of data mining techniques has focused on efficiently discovering 

hidden information from large databases that is useful for corporate decision-makers 

[20]. In recent years, data mining has become an important field of research [13]. 

Association rule mining [2, 3] is widely used to solve data mining problems in 

numerous applications, including financial analysis, the retail industry, and business 

decision-making [13].  

In a transaction database where each transaction is a set of items or products, the 

application of association rules identifies interesting itemsets from the database [2, 3]. 

Traditionally, an association rule is interesting if its support and confidence values are 

not less than the minimum support (minSup) and minimum confidence (minConf) 

thresholds. An itemset X is frequent if the support value of X satisfies the minSup 

requirement. Using discovered frequent itemsets can directly generate the 

corresponding association rules. Accordingly, research on association rule mining 

usually focuses on establishing efficient methods to identify all frequent itemsets. 

Numerous efficient methods have been proposed to discover frequent itemsets, such as 

level-wise algorithms [2, 3, 7, 8, 12, 30] and pattern-growth methods [1, 15, 16, 21, 26].  

In many applications, the importance of each item to the user varies. Cai et al. [9] 

first assigned item weights to overcome this problem. The weight of an item indicates 

the profitability of the product. Several researchers have proposed weighted association 

rule schemes [29, 33], but these algorithms still employ support values of itemsets to 

measure their importance. Support values only consider whether an item is bought in a 

transaction. The appearance of each item in a transaction is regarded as a binary 

variable, which does not reflect the quantities or prices of items purchased in each 



 

3 

transaction. Table 1 shows a sample transaction database that includes six transactions. 

The series of numbers in the column “Count” indicates the sale amount for each item in 

each transaction. Item B appears in four transactions; therefore, according to the 

definition of the support value, item B has a support count of four. However, the total 

sale amount of item B is nine (1 + 4 + 1 + 3). 

In reality, multiple quantities of a product may be bought in one transaction. An 

item should be weighted differently for each transaction, even if each transaction has 

the same length; thus, deriving interesting itemsets from support values may be 

misleading. Carter et al. [10] propose the share-confidence model to discover useful 

knowledge about numerical attributes associated with items in a transaction. Several 

other methods have since been proposed to efficiently discover share-frequent 

(SH-frequent) itemsets with infrequent subsets [4-6, 17, 18, 22-24]. Yao et al. [34, 35] 

generalize the share-confidence model [6] to develop the conventional utility mining 

model. This model can be used to measure the utility of an itemset in terms of net profit, 

total cost, or time spent [27, 28, 34, 35].  

Applications may have different objectives for various data models; thus, there is 

no single measure that is suitable for every application. Recently, Yao et al. [36] 

attempted to build a unified framework for utility-based measures [11, 27, 28, 32, 34-36] 

that allows the user to select a suitable utility mining tool for a specific application; 

however, this framework only employs existing tools. Thus, to effectively discover 

high utility itemsets, the need for efficient algorithms remains urgent.  

This study focuses on conventional utility mining. In the conventional utility 

mining model, an item has both internal and external utility [35]. The internal utility of 

an item is the numerical value assigned to it in a transaction, for example, the quantity 

of an item purchased in a transaction. The external utilities of all items are stored in a 

utility table (i.e. unit profit table or unit cost table). Table 2 provides an example that 
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lists the unit profit for each item. For example, selling one unit of product A results in a 

profit of three dollars. Using the sample database in Table 1 and its associated utility 

table (Table 2), users can compute the total profit from each itemset. The utility of an 

itemset is the summation of its item utilities, which are the products of items’ internal 

and external utilities, in each transaction. Consider the transaction database in Table 1 

with the external utility values found in Table 2. The utility value of {A, B} is 

16)2133()2131( =×+×+×+× , since {A, B} is only contained in T01 and T05. Based on 

the sample data, selling products A and B together will yield a total profit of $16.  

 

Table 1. Example of a transaction database with counting 

TID Transaction Count 

T01 {A, B, C, D, G, H} {1, 1, 1, 1, 1, 1} 

T02 {A, C, E, F} {4, 3, 1, 2} 

T03 {A, C, E} {4, 3, 3} 

T04 {B, C, D, F} {4, 1, 2, 2} 

T05 {A, B, D} {3, 1, 2} 

T06 {B, C, D} {3, 2, 1} 

 

Table 2. Example of a utility table 

Item A B C D E F G H 

Profit ($) 3 2 1 3 5 2 8 4 

 

The profitability of an itemset or the total cost of stocking an itemset cannot be 

determined using the support value alone. Thus, in practical terms, utility mining can be 

more useful than traditional association rule mining.  

Example 1.1 Consider the sample database in Table 1 and the unit profit for each item 

in Table 2. Suppose that the goal of a sales manager is to determine which itemsets can 

generate a profit greater than the target value (i.e. the threshold). Table 3 lists the 18 
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most frequent itemsets with the profit of each itemset. Using a traditional association 

rule mining tool, such as Apriori, with a support threshold of 40% causes {A, E} and {A, 

C, E} to be neglected, even though they are the two highest profit itemsets in the utility 

model. Appearing in transactions T02 and T03, the profits of the itemset {A, C, E} is 

50)531334()511334( =×+×+×+×+×+× . Therefore, utility mining is more beneficial 

than traditional association rules in such scenarios.  

 

Table 3. Frequent itemsets with support values of at least 33%  

Support Itemset and its profit 

83.3% {C: 10} 

66.7% {A: 36}, {B: 18}, {D: 18}, {B, D: 36} 

50.0% {A, C: 34}, {B, C: 20}, {C, D: 16}, {B, C, D: 32} 

33.3% {E: 20}, {F: 8}, {A, B: 16}, {A, D: 21},  

{A, E: 44}, {C, E: 26}, {C, F: 12}, {A, B, D: 25}, 

{A, C, E: 50} 

 

Given a predefined minimum utility (minUtil) threshold, an itemset is considered 

high utility if its utility value is greater than or equal to the threshold value; otherwise, 

the itemset has a low utility value. The goal of utility mining is to discover all high 

utility itemsets in a transaction database using the utility table. The share-confidence 

model (herein referred to as share mining) is a variant of utility mining. If the internal 

utility value of each item is multiplied by its external utility value in each transaction, 

an SH-frequent itemset can be derived and called a high utility itemset. The algorithms 

for discovering SH-frequent itemsets can easily be modified to find high utility itemsets. 

Therefore, utility mining methods described in this study will also encompass share 

mining methods.  

A high utility itemset often includes some low utility subsets but may not include 
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any high utility subset. Consequently, the downward closure property of Apriori [2, 3] 

can not be directly applied to discover high utility itemsets. Intuitively, an exhaustive 

search method can be applied to identify all high utility itemsets. However, such a 

method is too time-consuming for a large dataset environment. Several heuristic 

methods have been proposed to accelerate the discovery of high utility (or SH-frequent) 

itemsets, such as the MEU (UMining_H) [27, 28, 34, 35], SIP, CAC, and IAB [4, 6] 

methods. Nevertheless, these predictive methods may not discover some high utility 

itemsets. Recently, Li et al. first developed some efficient approaches, including the 

FSM, SuFSM, ShFSM, and DCG methods, to identify all SH-frequent itemsets [22-24]. 

In the meanwhile, Liu et al. also presented a Two-Phase (TP) method to discover all 

high utility itemsets [27, 28].  

The performances of existing level-wise utility mining methods primarily 

depend on the number of candidates generated in each pass. The challenge of utility 

mining is how to effectively reduce the number of candidates. This study proposes the 

Isolated Items Discarding Strategy (IIDS), which can be applied to each level-wise 

utility mining method to further reduce the number of redundant candidates. In each 

pass, a utility mining method with IIDS scans a database that is smaller than the original 

by skipping isolated items to efficiently improve performance. This study focuses on 

the task of efficiently discovering all high utility itemsets.  

The rest of this paper is organized as follows: Section 2 presents the background 

and an overview of the current methods for solving the problem of utility mining. The 

methods of share mining that also work well for utility mining are presented in Section 

3. Section 4 explains the proposed isolated items discarding strategy. Section 5 

provides experimental results and evaluates the performance of the proposed strategy. 

Finally, we conclude in Section 6 with a summary of our work.  
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2. Background and related work 

2.1. Support-confidence model 

Given a transaction database, the application of association rule mining attempts 

to discover significant relationships among items. The formal definition is as follows.  

Let I = {i1, i2, …, in} be the set of items. Let DB = {T1, T2, ..., Tz} be the transaction 

database, where Tq is a transaction in DB and is a subset of I. That is, ∀ Tq∈DB, Tq⊆ I, 

1 ≤ q ≤ z. Let X be a set of items, called an itemset. If X is a subset of a transaction Tq, Tq 

is said to support X. The notation X⇒Y expresses the form of an association rule, 

where X⊆ I, Y⊆ I and XIY = φ . The two attributes support and confidence of each rule 

must satisfy the two user pre-defined minSup and minConf thresholds, respectively. If 

s% of transactions in DB contain YX U , the support value of YX ⇒  is s%. The 

itemset YX U  with length k is called a frequent k-itemset if its support value is not less 

than minSup. The rule YX ⇒  has the confidence value c% if the transactions 

containing X in DB in which c% of them also contain Y.  

Apriori is a multiple passes algorithm [2, 3], is the best-known method for 

discovering frequent itemsets. The Apriori principle states that each subset of a 

frequent itemset must be frequent; otherwise the itemset is infrequent. This property is 

also called the downward closure property or the anti-monotone property. In each pass, 

Apriori scans a database once and employs the downward closure property to filter out 

many useless candidates.  

2.2. Formal description of utility mining 

Share mining has been proposed to overcome the shortcomings of traditional data 
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mining, which overlooks the variance in sale quantity and price/profitability among 

items in a transaction [6]. Utility mining, a generalized form of the share mining model, 

is based on measuring internal and external utilities [35]. Given a transaction database, 

a minimum utility threshold, and a utility table, the goal of utility mining is to discover 

all high-utility itemsets. According to the problem statement and the definitions in [35], 

the notations and definitions of utility mining, with some modifications for consistency, 

are described as follows: 

Definition 2.1. A k-itemset X has an associated set of transactions in DB, denoted as 

DBX, where }|{ ITXDBTDB qqX ⊆⊆∈= . For example, in Table 1, },{ DCDB  = {T01, 

T04, T06}. 

Definition 2.2. The internal utility value of item ip in transaction Tq, denoted as iu(ip, 

Tq), is the value of ip in Tq. For example, in Table 1, iu(C, T02) = 3.  

Definition 2.3. The external utility of item ip in a transaction database, denoted as eu(ip), 

is the value of ip in the utility table of the database. For example, in Table 2, 1)( =Ceu  

and 3)( =Deu . 

Definition 2.4. The utility value of item ip in transaction Tq, denoted as util(ip, Tq), is the 

product of iu(ip, Tq) and eu(ip). That is, )(),(),( pqpqp ieuTiiuTiutil ×= , where qp Ti ∈ . 

For example, in Tables 1 and 2, util(B, T04) = 824 =× . Intuitively, this can be viewed 

as when a dealer sells four Bs and yields a profit of eight dollars in the transaction T04. 

The utility value of itemset X in transaction Tq, denoted as util(X, Tq), is the sum of the 

utility value of each item of X in Tq, where ∑
⊆∈

=
qp TXi

qpq TiutilTXutil ),(),( . For example, 

in Tables 1 and 2, util({C, E, F}, T02) = util(C, T02) + util(E, T02) + util(F, T02) = 

12225113 =×+×+× .  

In particular, ),( qq TTutil  is called the transaction utility value of Tq. Table 4 lists 
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the transaction utility values of the sample database in Table 1.  

 

Table 4. Transaction utility values of the sample database in Table 1 

Transaction T01 T02 T03 T04 T05 T06 Tutil(DB) 

Transaction utility 21 24 30 19 17 11 122 

 

Definition 2.5. The local utility value of an itemset X in DB, denoted as Lutil(X), is the 

sum of the itemset utility values of X in DBX. That is, ∑
∈

=
xq DBT

qTXutilXLutil ),()(  

∑ ∑
∈ ⊆∈

=
xq qpDBT TXi

qp Tiutil ),( . For example, in Table 1, }),({ DCLutil  = util({C, D}, T01) + 

util({C, D}, T04) + util({C, D}, T06) = 4 + 7 + 5 = 16.  

Definition 2.6. The total utility value of DB, denoted as Tutil(DB), is the sum of all 

transaction utility values in DB. That is, Tutil(DB) = ∑
∈DBT

qq
q

TTutil ),( . For example, 

Tutil(DB) = 122 as shown in Table 4. 

Definition 2.7. The utility value of itemset X in DB, denoted as UTIL(X), is the ratio of 

the local utility value of X to the total utility value in DB. That is, UTIL(X) = 
)(
)(

DBTutil
XLutil . 

In other words, UTIL(X) indicates the percentage of the utility value that itemset X 

contributed in DB. For example, in Table 1, %1.13122/16}),({ ==DCUTIL .  

Henceforth, in this study, the utility value of an itemset X refers to UTIL(X), except 

where indicates otherwise.  

Definition 2.8. Given a minUtil value, if UTIL(X)≥minUtil, the itemset X is a high 

utility itemset; otherwise X is a low utility itemset. The local utility value of the 

threshold is called the minimum local utility value, denoted as minLutil. Clearly, 

minLutil = minUtil×Tutil(DB).   

Example 2.1. Consider the transaction database presented in Table 1 and minUtil = 

30%. Table 5 lists the local utility value and the utility value of each 1-itemset, where 
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Tutil(DB) = 122. Let X = {A, C, E}, Lutil(X) = util(X, T02) + util(X, T03) = 20 + 30 = 50. 

Therefore, UTIL(X) = 
)(
)(

DBTutil
XLutil  = 50/122 = 41.0% ≥  30%. The itemset X is a high 

utility itemset. Table 6 lists all high utility itemsets.  

Although there are two high utility itemsets in the sample database as listed in 

Table 6, Table 5 shows that there are no high utility 1-itemsets (the utility values of 

1-itemsets are all less than 30%). Thus, in Example 2.1, applying the downward closure 

property to the utility mining model will reveal no high utility itemsets. 

 

Table 5. All local utility values of 1-itemsets of Table 1 

1-itemset X {A} {B} {C} {D} {E} {F} {G} {H} Total 

Lutil(X) 36 18 10 18 20 8 8 4 122 

UTIL(X) 29.5% 14.8% 8.2% 14.8% 16.4% 6.6% 6.6% 3.3% 100% 

 

Table 6. All high utility itemsets 

High utility itemset X {A, E} {A, C, E} 

Lutil(X) 44 50 

UTIL(X) 36.1% 41.0% 

 

2.3. Existing algorithms 

Exhaustive search methods, such as ZP and ZSP [4, 6], can discover all high utility 

itemsets in a database but may be excessively time-consuming for real-world 

applications. On the other hand, predictive approaches generally cannot ensure that the 

mining result contains the complete set of high utility itemsets [5, 6, 34, 35]. To address 

this urgent problem, Li et al. proposed the FSM algorithm, a non-exhaustive search 

method, to discover all SH-frequent itemsets [22]. Liu et al. presented a Two-Phase (TP) 

algorithm for the same purpose [27, 28]. Li et al. also suggested efficient algorithms 
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such as ShFSM and DCG [23, 24].  

TP and ShFSM methods employ similar properties to speed up the mining process. 

The greatest difference between the two methods is that TP has two phases, a level-wise 

process with multiple passes in the first phase (Phase I) and an extra DB scanning pass 

in the second phase (Phase II). ShFSM does not require that the additional second 

phase.  

ShFSM relies on the critical function value of each candidate to determine which 

candidates are useless. Let X be a candidate k-itemset, where k > 0. If the critical 

function value of X, CF(X), is less than the minimum threshold, then no superset of X 

can be SH-frequent [23]. Therefore, in the k-th pass, ShFSM scans the database to 

calculate the share value of each itemset. Then, ShFSM removes all useless candidate 

k-itemsets and employs the remaining candidates to generate the candidate 

(k+1)-itemsets for the next pass.  

However, ShFSM does require the join and prune steps of candidate generation in 

each pass. Therefore, Li et al. proposed the Direct Candidates Generation (DCG) 

algorithm to improve the performance of the mining process [24]. DCG is a level-wise 

method that DCG maintains an array for each candidate during each pass. The array of 

each candidate k-itemset stores the critical function values of its (k+1)-supersets. Thus, 

after the k-th pass, DCG discovers all SH-frequent k-itemsets and directly generates all 

candidate (k+1)-itemsets for the next pass without join and prune steps.  
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3. Utility mining using share mining methods 

Given a transaction database with a utility table, if the value of ip in each 

transaction is replaced by )(),( pqp ieuTiiu × , then a utility mining task simply becomes 

a share mining process. Therefore, each approach for discovering share-frequent 

itemsets also works well in utility mining.  

Definition 3.1. Let X be a k-itemset. A superset of X with length k + i contained in a 

transaction Tq is denoted as Xk+i, where X⊂Xk+i⊆ Tq∈DB and i > 0. For example, in 

Table 1, let X = {C, E}. Xk+1 = {A, C, E} or {C, E, F}, since {A, C, E} and {C, E, F} 

both contain X, have three elements, and appear in at least one transaction in DB. 

Definition 3.2. Let Xk+i be an arbitrary (k+i)-superset of k-itemset X, where i > 0. 

Function CF(X) is a critical function of X if Lutil(Xk+i) ≤  CF(X) for all Xk+i. That is, 

CF(X) is the upper bound of the utility value of X’s (k+i)-supersets. 

Theorem 3.1. Let Xk+i be an arbitrary (k+i)-superset of k-itemset X, where i > 0. 

Assume that there exists a critical function CF(X) ≥ Lutil(Xk+i) for all Xk+i. If CF(X) < 

minLutil, then no superset of X has high utility. 

The proof of Theorem 3.1 is provided in Appendix A.  

According to Theorem 3.1, if CF(X) < minLutil, then no superset of X has high 

utility. Thus, X can be removed from the candidate set after all high utility itemsets 

having a length less than or equal to |X| are obtained, and the inequality also holds.  

The goal of the existing algorithms for utility mining is to efficiently eliminate 

useless candidates in each pass. Reducing the critical function value of each itemset 

increases the performance of the utility mining process. Therefore, the calculation of 

CF(X) plays an important role in utility mining. In the next section, this study 
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introduces the strategy of isolated items discarding, which can be applied to existing 

utility mining methods to further reduce the number of candidates and to improve 

performance. This study applies the two best share mining methods, ShFSM and DCG, 

to the utility mining model. ShFSM is an efficient and typical method for share mining. 

The ShFSM method, modified [23] for utility mining is provided as follows:  

Definition 3.3. Let X be a k-itemset. The set which contains all Xk+i in DB is denoted as 

S(Xk+i), that is, Xk+i∈S(Xk+i). For example, in Table 1, Let X = {C, E}, S(Xk+1) = {{A, C, 

E}, {C, E, F}}. 

Definition 3.4. Given a transaction database and a k-itemset X, dbS(Xk+i) is the set of 

transactions in which each transaction contains at least one Xk+i in DB, where i > 0. For 

example, in Table 1, if X = {C, E} and i = 1, then dbS(Xk+1) = {T02, T03}. 

Lemma 3.1. dbS(Xk+i) = dbS(Xk+1), for any k-itemset X and any i > 0. 

Theorem 3.2. Given a transaction database DB, let Xk+i be an arbitrary (k+i)-superset of 

k-itemset X, where i > 0, then Lutil(Xk+i) ≤  Tutil(dbS(Xk+1)). 

Their proofs are detailed in Appendix A.  

ShFSM utilizes Tutil(dbS(Xk+1)) as the critical function value of X. According to 

Definition 3.2 and Theorem 3.1, if Tutil(dbS(Xk+1)) < minLutil, then all supersets of the 

k-itemset X are low utilities. The value of Tutil(dbS(Xk+1)) can easily be obtained by 

scanning DB. An arbitrary candidate X can be pruned if CF(X) < minLutil. Therefore, 

ShFSM avoids producing too many unnecessary candidates. ShFSM is a multiple-pass 

algorithm. In the k-th pass, ShFSM generates candidate k-itemsets, then scans the 

database once to determine high utility itemsets and compute the critical function value 

of each candidate. After scanning the database, the remaining set of candidate 

k-itemsets is called RCk, in which the critical function value of each candidate is above 

minLutil. Applying the Apriori join and prune steps to RCk, ShFSM generates candidate 
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(k+1)-itemsets for the next pass.  

The DCG method is efficient for discovering SH-frequent itemsets [24]. To 

discover high utility itemsets, like ShFSM, we simply replace the share value of each 

item with its utility value in the dataset and properly set up the minimum threshold. 

DCG can be easily utilized for mining high utility itemsets. 
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4. Proposed Strategy and Algorithms 

As described in the previous section, a well-designed critical function not only 

greatly reduces the number of candidate itemsets, but also significantly increases the 

performance of the mining process. This study proposes the Isolated Items Discarding 

Strategy (IIDS) as an efficient way of designing a critical function. IIDS can be applied 

to any existing level-wise utility mining method (including ShFSM, DCG, and TP) that 

uses a critical function to decrease the number of candidates. Although, the TP method 

does not employ the concept of a critical function, the transaction-weighted downward 

closure property [27, 28] can be regarded as a variant of the critical function.  

4.1 Isolated items discarding strategy (IIDS) 

For level-wise utility mining methods, some definitions for IIDS are as follows:  

Definition 4.1. Given minUtil, Ck is the set of candidate k-itemset in the k-th pass of the 

utility mining process. After the k-th pass, the process generates RCk. RCk is a subset of 

Ck, in which each k-itemset X satisfies the inequality CF(X) ≥ minLutil.  

Definition 4.2. For a level-wise utility mining method, after the k-th pass, RCk can be 

generated, where k > 0. An item ip∈I is isolated if ip∉X for all X∈RCk. Let ISetk+1 be the 

set of isolated items, which is generated after the k-th pass. That is, ISetk+1 = I – 

{ U
kj RCX

jpp Xii
∈

∈∀ | }. For example, consider the database in Table 1 and the utility table in 

Table 2 using ShFSM to discover high utility itemsets. Let minUtil = 30%, minLutil = 

6.33%30122 =× . C1 = {A, B, C, D, E, F, G, H}. After the first scan DB, we obtain CF(A) 

= 92, CF(B) = 68, CF(C) = 105, CF(D) = 68, CF(E) = 54, CF(F) = 43, CF(G) = 21, and 

CF(H) = 21. Therefore, RC1 = {A, B, C, D, E, F}. According to the definition, ISet2 = 
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{G, H}.  

For each X∈Ck, if CF(X) ≥ minLutil, then X∈RCk. Therefore, an isolated item 

cannot appear in any itemset whose critical function value is above the minimum 

threshold. 

Definition 4.3. In the k-th pass, where k > 0, given a transaction Tq, let NTq
k denote a 

transaction that contains all items of Tq, exclusive of all items in ISetk. That is, NTq
k = Tq 

- ISetk. Similarly, NDBk denotes the set which consists of NTq
k for all Tq in DB. NDBX

k is 

the set which consists of NTq
k for all Tq in DBX. In the first pass, ISet1 is set to ∅. Since 

for each NTq
k⊆Tq, NDBk⊆DB. 

Definition 4.4. Given minUtil, let HUI(DB) denote the set of all high utility itemsets 

and let HIr denote a high utility itemset. Therefore, HIr ∈ HUI(DB), where 

1≤ r≤ |HUI(DB)|. In addition, HUIk(DB) is a subset of HUI(DB), where the length of 

each high utility itemset in HUIk(DB) is k and k > 0. Similarly, HUI≥k(DB) is a subset of 

HUI(DB), in which the length of each high utility itemset in HUI≥k(DB) is larger than or 

equal to k.  

Lemma 4.1. Given minUtil and a utility table, for all )(DBHUIHI kr ≥∈ , if qr THI ⊆ , 

then k
qr NTHI ⊆ .  

Corollary 4.1. Given minUtil and a utility table, for all )(DBHUIHI kr ≥∈ , if qr THI ⊆ , 

then ),(),( k
qrqr NTHIutilTHIutil = , where k > 0. 

Theorem 4.1. Given minUtil and a utility table, the two high utility sets, HUI≥k(DB) 

and HUI≥k(NDBk), of the utility mining on DB and NDBk, respectively, are identical, 

where k > 0.  
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Theorem 4.2. Given minUtil and a utility table, the two high utility sets, HUIk(DB) and 

HUIk(NDBk), of the utility mining on DB and NDBk, respectively, are identical, where k 

> 0.  

Their proofs are detailed in Appendix B.  

Since HUIk(DB) = HUIk(NDBk) in each pass, deleting each isolated item of ISetk 

from DB does not change the result of utility mining. To avoid generating extra NDBk 

and rapidly increasing I/O costs in each pass, when scanning DB, the proposed IIDS 

skips isolated items of ISetk in each transaction. IIDS can be applied to any efficient and 

level-wise utility mining method to improve performance by replacing DB with NDBk.  

Fig. 1 shows the utility mining process with IIDS. If the utility mining method is a 

two-phase algorithm, such as TP, HUIk(DB) is not generated in the dashed line box, and 

the method requires an extra second phase to determine HUI(DB). This study proposes 

that IIDS be applied to the two best share mining methods, ShFSM and DCG, and 

renames them Fast Utility Mining (FUM) and DCG+, respectively.  

 

Fig. 1. Process of utility mining with IIDS 

4.2 FUM and DCG+ methods 

Let Ndbk
S(Xk+1) be the transaction set of NTq

k in which each NTq
k contains at least 

one Xk+1. In the k-th pass, FUM replaces the critical function Tutil(dbS(Xk+1)) of each 

candidate of ShFSM with Tutil(NdbS(Xk+1)). If k = 1, then the set of isolated items is 

empty and Tutil(dbS(Xk+1)) = Tutil(NdbS(Xk+1)). Scanning NDBk can easily obtain the 
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value of Tutil(NdbS(Xk+1)). For each itemset X, Tutil(NdbS(Xk+1)) ≤ Tutil(dbS(Xk+1)). 

Therefore, FUM has a lower critical function value of each k-itemset X than ShFSM 

does for k > 1. If each itemset in RCk is sorted in alphabetical order, the join step can 

efficiently skip joining useless itemsets. Thus, instead of RCk joining RC1 in the join 

step, FUM uses the sorted itemsets in RCk to join with each other. The following 

example shows the difference in Ck and RCk sizes between ShFSM and FUM.  

Example 4.1. Consider the example database in Table 1 and the utility table in Table 2 

with minUtil of 30%. Therefore, minLutil = %30122×  = 36.6. In Figs. 2 and 3, the 

number in the middle of each box is the critical function value calculated by ShFSM 

and FUM, respectively. The number in the bottom of each box is the local utility value. 

The two colored boxes denote the two high utility itemsets as shown in Figs. 2 and 3. 

For ShFSM in Fig. 2, CF({A, B}) = Tutil(dbS(Xk+1)) = util(T01, T01) + util(T05, T05) = 

21 + 17 = 38. Contrast this to FUM in Fig. 3, where RC1 = {A, B, C, D, E, F} and ISet2 

= {G, H} after the first pass. For the second pass, FUM scans DB, skipping isolated 

items. The database NDB2 and the transaction utility of each Tq
2 are listed in Table 7. 

None of the transactions in NDB2 include an isolated item. Therefore, CF({A, B}) = 

Tutil(Ndbk
S(Xk+1)) = util(T01-{G, H}, T01-{G, H}) + util(T05, T05) = 9 + 17 = 26. Since 

CF({A, B}) < 36.6, no superset of {A, B} has a high utility value.  

In Fig 2, in the three levels of the lattice, ShFSM generates 8, 15, and 5 candidates, 

respectively. The candidate itemsets in the dotted line boxes do not appear in RCk. As 

shown in the solid line boxes, ShFSM maintains 6 candidates in RC1, 9 candidates in 

RC2, and one candidate in RC3. The critical function values of them are at least 36.6.  

The difference between ShFSM and FUM arises in the second and third passes. In 

the second pass, FUM produces 15 candidates, finds a high utility itemset {A, E}, and 

then keeps seven itemsets in RC2 as shown in the solid line boxes in the second level of 

Fig. 3. Next, FUM produces two candidate 3-itemsets, {A, C, E} and {B, C, D}, from 
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RC2. In the third pass, the high utility itemset {A, C, E} is discovered. No critical 

function value of candidate 3-itemsets reaches 36.6, |RC3| = 0. The FUM process 

terminates. In the second and third passes, FUM has smaller Ck and RCk sets than 

ShFSM.  

 
Fig. 2. An example of candidate generation by ShFSM with minLutil = 36.6 

 

 
Fig. 3. An example of candidate generation by FUM with minLutil = 36.6 

 

Table 7. NDB2: Scan DB in the second pass of FUM by skipping isolated items 

TID Transaction (NTq
2) Count Isolated item Transaction utility 

T01 {A, B, C, D} {1, 1, 1, 1} G, H 9 

T02 {A, C, E, F} {4, 3, 1, 2}  24 

T03 {A, C, E} {4, 3, 3}  30 

T04 {B, C, D, F} {4, 1, 2, 2}  19 

T05 {A, B, D} {3, 1, 2}  17 

T06 {B, C, D} {3, 2, 1}  11 
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The pseudo-code of the FUM algorithm is as follows: 

Algorithm FUM 

Input: (1) DB: a transaction database with counts, (2) UT: utility table, and (3) minUtil: 

minimum utility threshold 

Output: All high utility itemsets 

Procedure: 

// minLutil = minUtil×Tutil(DB) 
1. k:=1; HUI1(DB):=φ ; ISet1:=φ ; C1:=I;  
2. foreach T∈DB // scan DB 

3.  accumulate ∀ Lutil(ip), and accumulate ∀ CF(ip) // ∀ ip∈T 

&& ∀ ip∈Ck 

4. foreach ip∈Ck // check all candidates 

5.  if Lutil(ip)≥ minLutil // high utility 

6.   HUIk(DB):=HUIk(DB)+ip;  

7.  if CF(ip)<minLutil  

8.   Ck:=Ck-ip; // delete useless item 

9.   ISetk+1:=ISetk+1+ip // add isolated item 

10. RCk:=Ck;   

11. while |RCk|>0 // next pass 

12.  k++; HUIk(DB):=φ ; ISetk+1:=φ ; 
13.  foreach Xp, Xq ∈RCk-1 // use RCk-1 to generate Ck 

14.   Ck:=Apriori-gen(Xp, Xq); // candidate generation 

15.  foreach T∈DB // scan DB 

16.   accumulate ∀ Lutil(X), and accumulate ∀ CF(X) by 

skipping ∀ ip∈ISetk; // ∀ X⊆T && ∀ X∈Ck  

17.  foreach X∈Ck // check all candidates 

18.   if Lutil(X)≥ minLutil // high utility 

19.    HUIk(DB):=HUIk(DB)+X;  

20.   if CF(X)<minLutil  

21.    Ck:=Ck-X; // delete useless itemset 

22.  RCk:=Ck;  

23.  determinate ISetk+1 in which no item appears in RCk; 

24. return HUI(DB)=U
k

HUIk(DB); 
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Lines 9 and 23 generate a set of isolated items, ISetk+1, in each pass. In lines 15 and 

16, the process skips all isolated items to compute the critical function value of each 

candidate when scanning DB, so that the critical function value of each candidate can 

be reduced.  

Similarly, DCG+ is a fast utility mining DCG algorithm to be used with the 

proposed IIDS. The following briefly describes how DCG is extended to become 

DCG+ by implementing IIDS.  

Definition 4.5. Let the candidate k-itemset X be {i1, i2, …, ik} in the order of literals, 

and let iq∈I be an item. If ik < iq then the (k+1)-superset of X {i1, i2, …, ik, iq} is defined 

as the monotone (k+1)-superset of X and is denoted as 1+k
iqX . For the example in Table 1, 

let X = {B, C, D}, 1+k
FX  = {B, C, D, F}. 

In the k-th pass, DCG scans the database once to determine which candidates are 

high utility. Meanwhile, DCG calculates the critical function values of each candidate’s 

all monotone (k+1)-supersets. Let X be a candidate with length k, DCG calculates the 

critical function value of each monotone (k+1)-superset of X, 1+k
iqX , as Tutil( 1+k

qiXDB ). 

The critical function value of 1+k
iqX  is the upper bound of its utility value. If 

Tutil( 1+k
qiXDB ) ≥ minLutil, then DCG adds 1+k

iqX  to Ck+1. Thus, DCG directly generates 

Ck+1 without the join and prune steps.  

According to Theorem 4.2, HUIk(DB) = HUIk(NDBk). In each pass, instead of 

scanning DB, DCG+ scans NDBk, which is a smaller database than DB, to obtain the 

identical set of high utility k-itemsets. DCG+ calculates the critical function value of 

each monotone (k+1)-superset of X, 1+k
iqX , as Tutil( k

k
qi

X
NDB

1+
). According to Definition 

4.3, k
k
qi

X
NDB

1+
⊆ 1+k

qiXDB . Therefore, Tutil( k
k
qi

X
NDB

1+
) ≤ Tutil( 1+k

qiXDB ). IIDS can reduce the 



 

22 

critical function values, so that DCG+ can delete more useless candidates than DCG. 

Without the redundancy, this study omits the detailed algorithm of DCG+. 

A utility mining method with IIDS scans a database that is smaller than the 

original by skipping isolated items to reduce the critical function values of candidates. 

A low critical function value indicates the low upper bound of the candidate’s utility 

value. Thus, a utility mining method with IIDS generates fewer candidates than the 

utility mining method without IIDS to improve performance. In addition to utility 

mining, IIDS can be employed for traditional frequent itemset mining. According to the 

Apriori property [2, 3], if an itemset is infrequent, then all supersets of the itemset are 

infrequent. If the utility value of each itemset is replaced with its support value and RCk 

is the set of frequent k-itemsets in each pass, then the utility mining with IIDS can be 

utilized for mining frequent itemsets. Therefore, IIDS also works well to discover 

traditional frequent itemsets.  
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5. Experimental results 

The performance of two methods FUM and DCG+, in which IIDS was 

implemented, was compared with that of TP, ShFSM, and DCG. The experiments were 

done on an AMD Barton ES 2900+ (2000 MHz) PC with 3 GB of main memory, 

running the Windows XP Professional operating system. All algorithms were 

implemented in Visual C++ 6.0 and applied to several synthetic and real datasets. To 

reduce the effect of disk writing, all discovered high utility itemsets were stored in the 

main memory. All experimental synthetic datasets and a real dataset were adopted from 

NU-MineBench 2.0, a powerful benchmark suite consisting of multiple data mining 

applications and databases [31]. 

5.1. Synthetic datasets 

An IBM synthetic data generator [19] was used for this study. The parameters of 

the generator are introduced in [3] and modified in [27]. The generated datasets are 

classified into two groups: (1) T10.I6, with a mean transaction size of 10 and mean size 

of the maximal potentially frequent itemsets of six; and (2) T20.I6, with a mean 

transaction size of 20 and mean maximal potentially frequent itemsets size of six. In 

each itemset of the synthetic datasets, internal utilities between one and four were 

randomly generated. Observed from real world databases, most items are in the low 

profit range [27, 28]. Therefore, the external utility of each item was heuristically 

chosen between 0.01 and 10 and randomly generated with a log-normal distribution. 

Fig. 4 shows the external utility distribution with 1000 and 2000 distinct items. The 

most items have a low external utility value.  
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(a) 1000 distinct items (b) 2000 distinct items 

Fig. 4. External utility distribution with distinct items 

Figs. 5 through 7 show the performance curves associated with these algorithms 

performed on T10.I6.D1000k.N1000, T10.I6.D100k.N2000, and 

T20.I6.D1000k.N1000, respectively. FUM and DCG+ had better performance than 

ShFSM and DCG, respectively. The experimental results demonstrate that employing 

IIDS can improve the performance of ShFSM and DCG. The running time of ShFSM 

was less than that of TP for scanning the database once. In a low minUtil value, FUM 

performed the best, followed by DCG+ and DCG (see Figs. 5a, 6a, and 7a). In a high 

minUtil value, DCG+ and DCG performed the best (see Figs. 5b, 6b, and 7b).  

As shown in Fig. 5, DCG+ was the most efficient method in a minUtil range of 

0.07% to 0.2%, followed by FUM, DCG, ShFSM, and TP, respectively. In a minUtil 

range of 0.08% to 0.28%, FUM outperformed DCG (Fig. 7). With a minUtil of 0.20%, 

the execution times of DCG+, FUM, DCG, and ShFSM were 41.9%, 61.2%, 80.2%, 

and 93% of the TP, respectively (Fig. 7a). 
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Fig. 5. Comparison of running time using T10.I6.D1000k.N1000 with various minUtil  
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Fig. 6. Comparison of running time using T10.I6.D1000k.N2000 with various minUtil  
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Fig. 7. Comparison of running time using T20.I6.D1000k.N1000 with various minUtil  

 

Table 8 lists the candidate numbers of Ck and RCk among the five algorithms in each 

pass using T10.I6.D1000k.N1000 with minUtil of 0.12%. Except for the first and the 

second passes, FUM and DCG+ generated a smaller candidate set than ShFSM and 

DCG, respectively. The running time of Phase I of TP was 3.9 seconds less than the 

total running time of ShFSM. However, TP required Phase II to determine HUI(DB). 

The total running time of TP was 177.1 seconds, while the time for ShFSM was 159.2 

seconds. Although no high utility itemset has a length between five and six, these 

algorithms did discover the high utility 7-itemset (see the last column of Table 8). FUM 

and DCG+ scanned the database 7 times; ShFSM and DCG 11 times; and TP 12 times. 
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Table 8 demonstrates that IIDS can help to reduce the size of candidate set and reduce 

the number of passes to scan the database. 

 

Table 8. Candidate number comparison in each pass using T10.I6.D1000k.N1000 with 
minUtil = 0.12% 

Method 
Pass (k) 

TP (Phase I) ShFSM DCG FUM DCG+ 
|HUIk| |Ck| |RCk| |Ck| |RCk| |Ck| |RCk| |Ck| |RCk| |Ck| |RCk| 

k=1 1000 893 1000 893 1000 NA 1000 893 1000 NA 238 
k=2 398 278 9472 398 278 9472 9472 NA 398 278 9338 9472 NA 18 
k=3 95 038 1357 95 038 1356 1357 NA 93 431 1116 1120 NA 1 
k=4 1635 1421 1635 1421 1421 NA 1355 491 491 NA 1 
k=5 1440 1386 1440 1385 1386 NA 549 56 56 NA 0 
k=6 1117 1103 1117 1103 1103 NA 28 28 28 NA 0 
k=7 700 684 700 680 684 NA 8 0 8 NA 1 
k=8 332 332 332 330 332 NA 0 0 0 NA 0 
k=9 110 110 110 110 110 NA 0 0 0 NA 0 

k=10 22 22 22 22 22 NA 0 0 0 NA 0 
k=11 2 2 2 0 2 NA 0 0 0 NA 0 
Total 499 674 16 782 499 674 16 772 16 889 NA 494 649 11 922 12 175 NA 259

Time(sec) 177.1 (155.3) 159.2 151.3 109.1 100.2  

 

Table 9 lists the candidate numbers generated from the four algorithms with a length 

greater than two. In the first pass of database scan, the set of isolated items was empty, 

so the IIDS took no action. Therefore, Table 9 only compares the difference of the 

numbers of candidates, with at least length three, generated by algorithms with and 

without implementing IIDS. The percentages in the column “Reducing rate 1” indicate 

that FUM saves percentage of generated candidates of the ShFSM did. The percentage 

numbers in the column “Reducing rate 2” indicate that DCG+ saves percentage of 

generated candidates of DCG did. In Table 9, the algorithm with IIDS always generates 

fewer candidates than the corresponding algorithm without IIDS. For 

T10.I6.D1000k.N1000 and T20.I6.D1000k.N1000, utility mining with a high minUtil 

value can obtain a significant improvement. For the dataset T10.I6.D1000k.N2000, the 

improvement is significant in two minUtil ranges (0.06%-0.14% and 0.20%-0.24%). 
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Table 9. Candidate number comparison with length greater than two 

Dataset minUtil ShFSM 
 

(A) 

FUM 
(with IIDS) 

(B) 

Reducing 
rate 1 

%)100( ×
−
A

BA  

DCG 
 

(C) 

DCG+ 
(with IIDS) 

(D) 

Reducing 
rate 2 

%)100( ×
−
C

DC  

T10.I6. 
D1000k. 
N1000 

0.04% 2 604 920 2 600 651 0.16% 415 654 412 914 0.66% 
0.06% 1 065 356 1 056 684 0.81% 185 127 176 963 4.41% 
0.08% 454 015 443 752 2.26% 61 871 51 632 16.55% 
0.10% 201 351 194 599 3.35% 17 351 10 551 39.19% 
0.12% 100 396 95 371 5.01% 6417 1703 73.46% 
0.14% 51 042 48 385 5.21% 2217 451 79.66%
0.16% 27 356 26 634 2.64% 370 106 71.35% 
0.18% 14 852 14 235 4.15% 174 61 64.94% 
0.20% 8067 7601 5.78% 21 0 100.00% 

T10.I6. 
D1000k. 
N2000 

0.04% 674 897 669 019 0.87% 413 768 406654 1.72% 
0.06% 248 961 229 023 8.01% 187 048 159 362 14.80% 
0.08% 87 622 66 936 23.61% 70 603 43 641 38.19% 
0.10% 38 080 14 156 62.83% 31 496 5222 83.42% 
0.12% 6048 4702 22.42% 4039 2316 42.66% 
0.14% 2949 2678 9.19% 2313 1985 14.18% 
0.16% 2313 1985 14.18% 2216 2186 1.35% 
0.18% 2045 2032 0.64% 1988 1981 0.33% 
0.20% 2002 1905 4.85% 1986 1776 11.08%
0.22% 1990 501 74.82% 1981 182 90.81% 
0.24% 1956 166 91.51% 1902 0 100.00% 

T20.I6. 
D1000k. 
N1000 

0.06% 10 764 231 10 752 539 0.11% 483 418 477 647 1.19% 
0.10% 4 357 889 4 338 928 0.44% 137 096 120 669 11.98% 
0.14% 2 042 690 2 027 660 0.74% 34 450 21 020 38.98% 
0.18% 1 054 549 1 041 902 1.20% 10 643 4037 62.07% 
0.22% 574 654 563 818 1.89% 3385 759 77.58% 
0.26% 329 566 321 728 2.38% 1906 314 83.53% 
0.30% 192 540 186 190 3.30% 165 16 90.3% 

 

Fig. 8 shows the scalability of these algorithms by increasing the number of 

transactions on T10.I6.Dxk.N1000 and T20.I6.Dxk.N1000, respectively, with minUtil 

of 0.12%. The number of transactions varies from 1000k to 6000k. The running time of 

each algorithm approximately increases linearly with the growth of DB. In Fig. 8a, the 

running time of FUM and DCG+ is less than that of FSM and DCG, achieving 31% and 

35%, respectively. For a longer mean transaction size (Fig. 8b), FUM and DCG+ have 

better performance than ShFSM and DCG with running times of 20% and 30%, 

respectively. Thus, the utility mining methods with IIDS significantly reduced the 

running time while offering linear scalability. 
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Fig. 8. Scalability with the number of transactions while minUtil = 0.12% 

5.2. Real dataset 

This study also evaluated these algorithms using a real dataset. The Chain-store 

dataset was taken from a major grocery store chain in California and contained 1 112 

949 transactions and 46 086 distinct items. The utility table stored the profit for each 

item. The total profit of the dataset is $26 388 499.80.  

Fig. 9 presents the performance with several minUtil values from 0.05% to 0.36%. 

Because DCG and DCG+ maintained an extra array for each candidate, the main 

memory could not keep all candidates in each pass; for this reason, DCG and DCG+ are 

not illustrated in Fig. 9. Fig. 9 shows that FUM outperformed ShFSM and TP; the 

running time of FUM was only 64.6% and 76.7% of the times for ShFSM and TP, 

respectively, with minUitl = 0.12%. 
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Fig. 9. Comparison of running time using the real dataset with minUtil between 0.05% 
and 0.36% 
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Table 10 lists the candidate numbers of Ck and RCk among the three algorithms in 

each pass using the real dataset with minUtil of 0.06%. The total running time of TP 

was 122.5 seconds, which was 13.9 seconds slower than ShFSM’s 108.6 seconds. FUM 

scanned the database four times; ShFSM, five times; and TP, six times. Table 10 

demonstrates that IIDS can help to significantly reduce the size of the candidate set 

with length greater than two and can reduce the number of passes required to scan the 

real dataset. For example, in the third pass, ShFSM generated 78 238 candidates, while 

FUM only generated 45 795 candidates.  

 
Table 10. Candidate number comparison in each pass using the real dataset with 

minUtil = 0.06% 
Method 

Pass (k) 
TP (Phase I) ShFSM FUM (with IIDS) 

|HUIk| |Ck| |RCk| |Ck| |RCk| |Ck| |RCk| 
k=1 46 086 6344 46 086 6335 46 086 6335 154 
k=2 20 119 996 7873 20 062 945 7869 20 062 945 5454 39 
k=3 78 278 1083 78 238 1081 45 795 170 3 
k=4 596 43 596 43 44 0 0 
k=5 1 0 1 0 0 0 0 

Total 20 244 957 15 343 20 187 866 15 328 20 154 870 11 959 196 
Time(sec) 122.5 (103.9) 108.6 89.1  

 

To analyze the difference between the high utility itemsets and the support-based 

frequent itemsets, this experiment employed the FP-growth algorithm [16] to generate 

all frequent itemsets. For the Chain-store dataset with minSup = 0.0073%, FP-growth 

generated 14 352, 33 371, 6569, 441, and 14 frequent itemsets with length from one to 

five, respectively.  

The three high utility itemsets with length three, which were discovered from 

Chain-store using FUM with minUtil = 0.06%, their local utility values and their 

support values as shown in Table 11. Numbers in an itemset indicate the IDs of 

products. Sales managers are interested in finding out which itemsets can generate high 

profits, but the traditional frequent itemset mining method may not satisfy this goal. For 
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example, a utility mining approach discovered the three high utility 3-itemsets with 

minUtil of 0.06% (Table 11). Selling the combination of products, {39182, 39206, 

39695}, earned a profit of $25 484.30. FP-growth discovered six frequent 3-itemsets, 

omitting the first two highest utility itemsets, {39182, 39206, 39695} and {39681, 

39690, 39692} when the minimum support threshold was 0.1%. To obtain the two 

highest utility 3-itemsets, the minSup threshold must be set less than 0.0074%. 

Nevertheless, the low threshold value, 0.0073%, resulted in 6569 3-itemsets being 

generated. FP-growth generated too many useless frequent 3-itemsets which interfered 

in selecting of high profit itemsets. Even when the interesting itemsets were discovered, 

the real profits were still unknown.  

 
Table 11. High utility 3-itemsets discovered from Chain-store using minUtil = 0.06% 

High utility 3-itemset X Lutil(X) Support Support ranking  
in all 3-itemsets 

{39182, 39206, 39695} 25 484.3 0.0074% 6400 

{39681, 39690, 39692} 19 520.8 0.0093% 3710 

{21283, 21308, 22900} 19 064.9 0.1002% 6 

 

Fig. 10 shows the corresponding support values of the 196 high utility itemsets 

with minUtil of 0.06%. The x-axis represents the ranked high utility itemsets decreasing 

ordered by their utility values, and the y-axis represents their support values. The 

itemset ranked 31st had the maximum support value 5.734%. The support value 

(3.149%) of the itemset ranked 169th was over 400 times the support value (0.007%) of 

the itemset ranked 87th. In this case, an itemset with a higher profit had a lower support 

value. Traditional frequent itemset mining using a support threshold cannot effectively 

discover high utility itemsets. Therefore, utility mining is more useful for a 

profit-oriented business environment than the traditional association rule mining that is 

currently used in practice. 
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Fig. 10. Support values of 196 high utility itemsets, ranked by utility value 
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6. Conclusions 

Increasing the profit of a corporation is one of the most important goals of data 

mining. Traditional association rules methods only consider whether an item is bought 

in a transaction. However, customers can buy more than one of the same item in a 

transaction, and the unit profit for each item may vary. Utility mining, a generalized 

form of share mining, has been proposed to overcome the drawback of traditional 

association rule mining. However, the Apriori principle cannot be directly applied to 

efficiently discover high utility itemsets as this becomes time-consuming. The ability to 

efficiently identify high utility itemsets is crucial for utility mining. Therefore, this 

study proposes the Isolated Items Discarding Strategy (IIDS) to identify isolated items 

from transactions and ignore them in the process of candidate itemset generation. The 

contributions of this study are as follows: 

1. Propose IIDS to reduce the critical function values of itemsets. 

2. The experimental results using synthetic and real datasets reveal that the 

performances of FUM and DCG+ were better than that of ShFSM and DCG, 

respectively. IIDS can further decrease the number of candidates and efficiently 

increase the performance of these utility mining methods.  

3. Theoretical proofs and experimental results indicate that the IIDS is a promising 

strategy for utility mining.  

IIDS can also be applied to Apriori-like traditional mining. In the future, the authors 

will extend the application scope of IIDS to some classification models. Classification 

is an important problem in data mining; several researchers have integrated 

classification and association rule mining [14, 25]. Thus, the connection between utility 

mining and associative classification should be further investigated.  



 

33 

Acknowledgements 

The authors would like to acknowledge the helpful comments made by the 

anonymous reviews of this paper. The second author was supported by the National 

Science Council, Taiwan and Providence University, Taiwan.  

Appendix A. Proofs for the theorems and lemma given in Section 3  

Proof of Theorem 3.1.  

For each Xk+i, since Lutil(Xk+i) ≤ CF(X) < minLutil, Xk+i is a low utility itemset. Xk+i is 

an arbitrary superset of X. Therefore, if CF(X) < minLutil, then no superset of X has high 

utility. 

Q.E.D 

Proof of Lemma 3.1.  

(1) dbS(Xk+i)⊆dbS(Xk+1): Let T be an arbitrary transaction and T∈dbS(Xk+i). That is, there 

exists a (k+i)-itemset Xk+i, for some i > 0, such that Xk+i ⊆ T. Clearly, any 

(k+1)-subset of Xk+i containing X is also contained in T. Therefore, T∈dbS(Xk+1).  

(2) dbS(Xk+i)⊇dbS(Xk+1): Let T be an arbitrary transaction and T∈dbS(Xk+1). That is, there 

exists a (k+1)-itemset Xk+1, such that Xk+1⊆ T. Clearly Xk+1 ∈S(Xk+i), according to 

Definition 3.4, T∈dbS(Xk+i). 

Hence, we obtain dbS(Xk+i) = dbS(Xk+1). 

Q.E.D 

Proof of Theorem 3.2.  

For an arbitrary (k+i)-superset Xk+i of X, since Xk+i ∈S(Xk+i), )( ikik XSX dbDB ++ ⊆ . By 

Lemma 3.1, )( 1++ ⊆ kik XSX dbDB . According to Definitions 2.5 and 2.6, Lutil(X’) ≤  

Tutil(dbS(Xk+1)) 
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Q.E.D 

Appendix B. Proofs for the lemma, corollary, and theorems given in Section 4 

Proof of Lemma 4.1. 

Since for all )(DBHUIHI kr ≥∈ , the length of HIr, |HIr|, is at least k. According to 

Definition 4.2, let Tq = NTq
kU tq, where NTq

kI tq =φ  and tq⊆ ISetk. Each item in tq has 

no high utility superset with length at least k in HUI≥k(DB). So that for all qp ti ∈ , 

rp HIi ∉ . qr tHI I  = φ . If qr THI ⊆  then qr THI ⊆  - tq. Therefore, k
qr NTHI ⊆ . 

Q.E.D 

Proof of Corollary 4.1.  

According to Lemma 4.1, if qr THI ⊆ , k
qr NTHI ⊆ . For any ip ∈ rHI , 

),(),( k
qpqp NTiiuTiiu =  since NTq

k is a subset of Tq. Moreover, 

)(),(),( pqpqp ieuTiiuTiutil ×= = )(),( p
k

qp ieuNTiiu × = ),( k
qp NTiutil . Therefore, 

∑
⊆∈

=
qrp THIi

qpqr TiutilTHIutil ),(),( = ∑
⊆∈ k

qrp NTHIi
qp Tiutil ),( = ∑

⊆∈ k
qrp NTHIi

k
qp NTiutil ),( = 

),( k
qr NTHIutil . 

Q.E.D 

Proof of Theorem 4.1.  

(1) (1) HUI≥k(NDBk)⊆HUI≥k(DB): According to Definition 4.3, NDBk is the database 

that consists of NTq
k for all Tq in DB. The mapping function of transactions is 

“one-to-one and onto” between NDBk and DB. For an arbitrary itemset NTq
k in 

NDBk and the corresponding Tq in DB, we have NTq
k⊆Tq. So that for all Tq in DB, 

X⊆Tq, we have util(X,Tq) ≥ util(X,NTq
k). ∑

∈DBT
q

q

TXutil ),( ≥ ∑
∈ kk

q NDBNT
qTXutil ),( . That is, 
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HUI(NDBk)⊆HUI(DB). Therefore, HUI≥k(NDBk)⊆HUI≥k(DB). 

(2) HUI≥k(DB) ⊆ HUI≥k(NDBk): Assume there exists )(DBHUIHI kr ≥∈ , but 

)( k
kr NDBHUIHI ≥∉ . Therefore, there exists an transaction qT in DB such that 

),(),( k
qrqr NTHIutilTHIutil > . However, according to Corollary 4.1, 

),(),( k
qrqr NTHIutilTHIutil = . This contradicts the assumption. Therefore, 

HUI≥k(DB)⊆HUI≥k(NDBk). 

According to the above two cases, we have HUI≥k(DB) = HUI≥k(NDBk). 

Q.E.D. 

Proof of Theorem 4.2. 

By Definition 4.4, clearly, HUI≥k(DB) is the disjoint union of HUIk(DB) and 

HUI≥k+1(DB), and HUI≥k(NDBk) is the disjoint union of HUIk(NDBk) and 

HUI≥k+1(NDBk). According to Theorem 4.1, we have HUI≥k(DB) = HUI≥k(NDBk), 

for all k > 0. That is, HUI≥k(DB) = HUI≥k(NDBk) and HUI≥k+1(DB) = 

HUI≥k+1(NDBk) both hold, therefore, HUIk(DB) = HUI≥k(DB) - HUI≥k+1(DB) = 

HUI≥k(NDBk) - HUI≥k+1(NDBk) = HUIk(NDBk). 

Q.E.D. 
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