
TFRP: An Efficient Microaggregation Algorithm for

Statistical Disclosure Control

Chin-Chen Chang1,2, Yu-Chiang Li2, and Wen-Hung Huang3

1Department of Information Engineering and Computer Science,
Feng Chia University, Taichung 40724, Taiwan, R.O.C.

2Department of Computer Science and Information Engineering,
National Chung Cheng University, Chiayi 62102, Taiwan, R.O.C.

E-mail: {ccc, lyc}@cs.ccu.edu.tw
3Institute of Information Systems and Applications,

National Tsing Hua University,

101, Section 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan, R.O.C.
E-mail: csie0916@yahoo.com.tw

Abstract. Recently, the issue of Statistic Disclosure Control (SDC) has attracted much

attention. SDC is a very important part of data security dealing with the protection of

databases. Microaggregation for SDC techniques is widely used to protect confidentiality

in statistical databases released for public use. The basic problem of microaggregation is

that similar records are clustered into groups, and each group contains at least k records to

prevent disclosure of individual information, where k is a pre-defined security threshold.

For a certain k, an optimal multivariable microaggregation has the lowest information

loss. The minimum information loss is an NP-hard problem. Existing fixed-size

techniques can obtain a low information loss with O(n2) or O(n3/k) time complexity. To

improve the execution time and lower information loss, this study proposes the Two

Fixed Reference Points (TFRP) method, a two-phase algorithm for microaggregation. In

the first phase, TFRP employs the pre-computing and median-of-medians techniques to

efficiently shorten its running time to O(n2/k). To decrease information loss in the second

phase, TFRP generates variable-size groups by removing the lower homogenous groups.

Experimental results reveal that the proposed method is significantly faster than the

Diameter and the Centroid methods. Running on several test datasets, TFRP also

significantly reduces information loss, particularly in sparse datasets with a large k.

Keywords. Microaggregation, disclosure control, k-anonymity, database security

1

1. Introduction

Recent developments in data mining techniques have enabled the rapid and

efficient discovery of hidden knowledge from very large databases [14]. Users

employing such techniques for databases can acquire sensitive knowledge [3]. Since

many types of current research heavily depend on statistical data that protect the

confidentiality of personal information [1, 11, 22], statistical disclosure control (SDC)

has become an important data security issue [7, 16, 18].

Many government agencies and commercial organizations need to collect and

analyze data about individuals to support their research activities. The collected

individual data (micro-data) contain confidential information of individuals, such as

income or type of disease. Each individual j is assigned a data vector Vj, which

contains two kinds of variables: key variables, which identify the individual, and

sensitive variables, which contain sensitive information about the individual [9].

Therefore, the direct release of databases for study may incur security risks. The

challenge for SDC is to modify data in order to provide sufficient protection of

sensitive information without seriously damaging the information used for data

mining purposes [10].

Database managers often remove explicit identifiers, such as names and phone

numbers, to protect privacy. A released database that suppresses identifying attributes

is not sufficient to preserve privacy. Linked together, public databases can narrow

down or even identify individuals. An example in [19] demonstrates that users can re-

identify individuals from anonymous medical data by linking to an external voter list,

using non-identifiable attributes such as zip code, birthday, and gender.

One way to protect individuals is to mask the released database that achieves k-

anonymity. A release provides k-anonymity protection for k > 1 if each entity in the

database is indistinguishable from at least k - 1 other entities in the database [21].

When an attribute value appears k or more times in a database, it is difficult to re-

identify individuals by linking to an external database. Several researchers use

generalization and suppression techniques to implement k-anonymity [2, 17, 19, 21].

However, generalization and suppression approaches cause high information loss,

especially on numerical attributes [8, 10].

2

Microaggregation, which satisfies k-anonymity [8, 10], is a widely used SDC

technique for numerical data and has been extended for categorical data [10, 23].

Instead of releasing actual values of individual records, microaggregation clusters

records into groups, and each attribute value of records in one group is replaced by the

centroid of the group. For a certain k, each group contains at least k records to satisfy

k-anonymity, where the confidentiality of each individual is protected.

The problem of microaggregation differs from the classical clustering problem. In

microaggregation, each group has at least k data points (data vectors) rather than to

assign the number of groups. Given a security parameter k, an optimal

microaggregation has minimum information loss (or highest data quality) at the fixed

security level. Although an efficient algorithm exists for optimal univariate

microaggregation [12], multivariate microaggregation has been proven as an NP-hard

problem [18]. Therefore, several heuristic methods have been proposed for

multivariate microaggregation [9, 15, 20].

An optimal microaggregation has no group containing more than 2k-1 records

since each group with size ≥ 2k can be partitioned in order to further reduce

information loss [9]. Although each group is limited to a number of members between

k and 2k-1, the possible partition number still grows exponentially with the number of

data vectors [15]. Existing heuristic microaggregation methods can be categorized

into two classes: fixed-size microaggregation [9] and variable-size microaggregation

[15].

The Diameter and the Centroid methods are two well-known fixed-size

microaggregation techniques. Both have low information losses, but the time

complexities of Diameter and Centroid are O(
k
n3

) and O(n2), respectively, which are

too high to practice for a large database. Therefore, this study proposes a two-phase

algorithm for microaggregation: the efficient Two Fixed Reference Points (TFRP)

method. In the first phase, TFRP employs several techniques such as pre-computing,

median-of medians, and partial distance to efficiently reduce the running time to

O(
k
n2

). In the second phase, TFRP scatters the members of the low homogenous

groups to the nearest groups to improve data quality.

The rest of this paper is organized as follows: Section 2 introduces the

background and the relative Diameter and Centroid methods. Section 3 then describes

3

the proposed Two Fixed Reference Points (TFRP) algorithm, which is a two-phase

method, and analyzes its time complexity. In addition, Section 4 provides

experimental results and evaluates the performance of the proposed algorithm.

Finally, Section 5 presents conclusions.

4

2. Related Work

2.1. General remarks

Consider a statistical database with n records and p numerical attributes. Each

record is a p-dimensional data point (data vector) in a p-dimensional space.

Microaggregation involves combining n data points to form g groups of at least k size,

where each data point belongs to exactly one group, called the k-partition [9]. Since

each vector is replaced by the group centroid before publication, similar points appear

in the same group; this results in low information loss. The squared Euclidean

distance is widely used to measure the homogeneity within a group. Equation (1)

describes the squared Euclidean distance between two p-dimensional vectors, x and y.

The distance value between two vectors indicates the value of their squared Euclidean

distance, except where noted.

d(x, y) = 2yx − = ∑
=

−
p

i
iyix

1

2))()((, (1)

where x(i) and y(i) represent the attribute values of the i-th dimension of x and y,

respectively. Equation (2) shows the within-group squared error (GSE) of a group Gi.

GSE(Gi) = ∑
=

−
in

j
iij xxd

1
)(, (2)

where ni is the element number in the i-th group Gi, ni ≥ k, xij is the j-th element in Gi

and ix is the centroid of Gi. The optimal microaggregation is to reach the minimum

total sum of the within-group squared errors (SSE). That is,

SSE = ∑
=

g

i
iGGSE

1
)(= ∑∑

= =
−

g

i

n

j
iij

i

xxd
1 1

)(, (3)

where g is the number of generated groups and ∑
=

g

i
in

1
 = n. The total sum of square

errors (SST) is as follows:

SST = ∑∑
= =

−
g

i

n

j
ij

i

xxd
1 1

)(, (4)

where x is the centroid of the n vectors. The measure of information loss (IL) is

defined as IL = SSE/SST. A low IL value signifies higher data quality of a released

database.

5

Statistical agencies typically use the fixed-size technique to implement

microaggregation [9]. A microaggregation method usually results in low information

loss by fixing each group size to k. The Diameter and Centroid methods are two well-

known fixed-size microaggregation methods and two of the best approaches to

achieve low information loss [9, 15]. A concise description is as follows:

2.2. Diameter and Centroid methods

In the Diameter method, the pair of initial points (xr, xs) with the longest squared

Euclidean distance is selected. Then, two groups are formed with size k around xr and

xs, respectively. One group, Gr, initially contains only one vector xr, and in each of the

k-1 iterations, the vector closest to the centroid of Gr is added to Gr. The other group,

Gs, which contains xs, is similarly formed. The process iteratively selects a pair of

maximum distance vectors among the rest of vectors and forms two groups until less

than k vectors remain. Each remaining vector is added to its nearest group. The time

complexity of the Diameter method reaches O(
k
n3

) [15].

Instead of clustering two groups around the two extreme vectors in each iteration,

the Centroid method selects a furthest vector from the centroid. Centroid, therefore,

reduces the time complexity to O(n2) and still obtains a low information loss [15].

2.3. Minimum spanning tree microaggregation

If the size of each group generated by clustering methods (such as [13, 24]) can

be contained the size of each group, such clustering methods may be good heuristic

methods for microaggregation. The partitioning minimum spanning tree (MST) is one

of the most used methods for clustering. Therefore, Laszlo and Mukherjee proposed a

variable-size minimum spanning tree method for microaggregation [15].

They remove edges from the MST in the order of decreasing length. To satisfy

the group size constraint, the adapted algorithm cuts the selected edges if the

separation produces two admissible sub-trees, which both contain at least k points;

otherwise, the edge is skipped. Thus, each resulting tree is a cluster and conforms the

requirement of the minimum group size constraint.

The MST partitioning algorithm may generate several large groups, which have

size ≥ 2k. To reduce the information loss, users can employ one of the fixed-size

6

methods to further separate from the oversize groups. However, the MST partitioning

method has higher information loss than that of Diameter, unless the distribution of

records in the micro-data set is well-separated natural clusters. Furthermore, the

running time of MST is longer than that of Centroid.

7

3. Two Fixed Reference Points Method

This study proposes the Two Fixed Reference Points (TFRP) method to speed the

process performance and reduce information loss. TFRP is a two-phase algorithm. In

the first phase, TFRP uses a novel fixed-size algorithm to shorten the running time

efficiently. In the second phase, TFRP reduces the number of groups generated by the

first phase to improve the data quality. Furthermore, the post-processing technique of

the second phase can be applied to any microaggregation method to reduce

information loss.

We describe the two-phase algorithm as follows. In the first phase, TFRP selects

two fixed reference points, R1 and R2, which are two extreme points calculated from

the micro-data set. Let a micro-data set contain p numerical attributes and n records.

The two extreme values, GMin and GMax, are defined as follows:

GMin = min{xj(i) | 1 ≤ j ≤ n and 1 ≤ i ≤ p}, and

GMax = max{xj(i) | 1 ≤ j ≤ n and 1 ≤ i ≤ p},

where xj(i) denotes the i-th attribute value for each vector xj in the micro-data set. That

is, GMin is the minimum attribute value over all micro-data set. Similarly, GMax is

the maximum attribute value over all micro-data set. The p attribute values of the two

reference points become

R1 = {GMin, GMin, …, GMin}, and

R2 = {GMax, GMax, …, GMax}.

If GMin = GMax, than R1 = R2. To avoid this situation, the record number of a

micro-data set must be greater than one. After generating the two reference points, we

can employ several techniques to reduce the running time of TFRP.

Example 1. Consider the nine two-dimensional vectors in Fig. 1. Each vector has a

literal label and a number pair to show its position in the two-dimensional coordinate

system. According to the above definition, GMin = min{11, 9, 11, 8, 12, 6, 9, 6, 8, 10,

5, 4, 4, 3, 2, 5, 1, 3} = 1 and GMax = max{11, 9, 11, 8, 12, 6, 9, 6, 8, 10, 5, 4, 4, 3, 2,

5, 1, 3} = 12. Therefore, R1 = {1, 1} and R2 = {12, 12}.

8

Fig. 1. Example of micro-data

3.1. Reduce the running time

In the first phase, TFRP is a fixed-size microaggregation method and requires

⎥⎦
⎥

⎢⎣
⎢

k
n iterations to generate ⎥⎦

⎥
⎢⎣
⎢
k
n groups. In each iteration, TFRP selects the initial point

xr, the furthest vector from a reference point, then computes the distance of each

vector to xr. Unlike the Diameter or the Centroid methods, which select the closest

vector to the centroid of Gr, TFRP selects the k-1 closest vectors to xr and xr itself to

form group Gr. After ⎥⎦
⎥

⎢⎣
⎢

k
n iterations, each remaining (n mod k) vector is added to its

nearest group.

Since the two reference points R1 and R2 are fixed, to efficiently obtain each

initial vector, this study employs two one-dimensional arrays to pre-compute, sort,

and store the distances of R1 and R2 to all vectors. Furthermore, to obtain the k-1

closest vectors to the initial vector efficiently, the max-priority queue or the median-

of-medians techniques [6] can be employed to speed up the process. The time

complexity of the median-of-medians algorithm is linear; thus, this study implements

the selection algorithm to TFRP. The two techniques cannot be applied to the

Diameter or Centroid methods, because they must re-compute the centroid of a group

while a new element is added. The pseudo-code of the first phase of TFRP is provided

in Appendix A.

The algorithm of the first phase of TFRP is as follows:

Algorithm 1: Phase I of TFRP

9

1. Compute the two reference points R1 and R2. All vectors are assigned to a set

(SET).

2. Select a reference point.

3. Select an initial point xi from the reference point.

4. Calculate the distance of each vector to xi.

5. Select k-1 closest vectors together with xi to form a group, and remove the k

vectors from SET.

6. Select another reference point, then go to Step 2 until |SET|<k.

7. Assign each remaining vector of SET to its closest group.

In Step 7, each remaining vector is assigned to its closest group. To avoid further

unnecessary calculation of distances, this study applies the partial distance search

(PDS) technique [4] for early termination of the computation of the squared Euclidean

distance between the centroid of each group and a vector. Let the m-dimensional

partial distance between x and y be dm(x, y) = ∑
=

−
m

i
ii yx

1

2)(, where 1 ≤ m ≤ p. Assuming

that the smallest distance found so far to the vector x is dmin’, if the centroid ci of a

group satisfies the condition dm(x, ci) > dmin’, then group Gi must be not the closest

group to x. Accordingly, the process can reject Gi without calculating the real distance

between x and ci.

Theorem 1. Let n be the number of records, k be the minimum size of groups, and the

attribute number p be a constant. The time complexity of Phase I of TFRP is O(
k
n2

).

The proof of Theorem 1 is provided in Appendix B. Example 2 presents a simple

example of how to work on Phase I of TFRP. Based on the grouping result of Phase I,

the second phase of TFRP employs an adjusted strategy to lower the information loss.

The algorithm of the second phase appears in Section 3.2.

Example 2. Consider the sample micro-data set in Fig. 1 with k = 3. The first phase of

TFRP is a fixed-size microaggregation. TFRP first generates the two reference points,

R1 and R2. Then, TFRP assigns the furthest vector “A” from R1 as an initial vector.

Starting from vector “A”, the closest two vectors are vector “B” and “C”. Therefore,

we get the first group, G1 = {A, B, C}. Next, TFRP selects the vector “J,” which is the

furthest vector from another reference point, R2, to form the second group, G2 = {J, H,

10

I}. TFRP employs the two reference points in turn to get the initial vector of each

group. The last group, G3, is {E, D, F} as shown in Fig. 2. The first element of each

group is the initial vector. If the number of the remaining vectors is less than k, then

each vector is assigned to a corresponding group where the group’s centroid is closest

to the vector.

Fig. 2. Example of grouping micro-data in Phase I of TFRP

3.2. Decrease the information loss

After Phase I, TFRP generates ⎥⎦
⎥

⎢⎣
⎢

k
n groups with size ≥ k. However, groups with

size k do not always have the lowest SSE value. Several groups may have a large GSE

value. Reassigning the members of a group with a large GSE value to the nearest

groups may reduce the total SSE value. Therefore, to reduce the information loss in

the second phase, TFRP sorts groups in decreasing order of their GSE values. Then,

TFRP selects the groups in order and to check whether reassigning the members of

the selected group to their nearest groups can improve the data quality. If scattering

the selected group cannot reduce the information loss, then TFRP checks the next

group; otherwise, TFRP scatters the group. The process terminates after each group is

checked. The pseudo-code of the second phase of TFRP is presented in Appendix C.

The algorithm of the second phase of TFRP is as follows:

Algorithm 2: Phase II of TFRP

1. Compute GSE of each group, and sort them in decreasing order.

11

2. Select a group Gi in order and compute the current total sum of the within-group

squared errors (SSE1).

3. Calculate the distance of each vector of Gi to any other group.

4. Assign each vector of Gi to its closest group provisionally, and compute the

current total sum of the within-group squared errors (SSE2).

5. If SSE1 > SSE2, then assign each vector of Gi to its closest group; otherwise,

regain Gi.

6. Return to Step 2 and repeat until each group is checked.

In Step 4, TFRP only calculates the GSE values of influenced groups to avoid

redundantly computing the GSE values of changeless groups. The pseudo-code of

Step 4, Compare_SSE(), is provided in Appendix C. In Step 5, scattering a group can

reduce the information loss in each iteration. The process of Phase II reduces the

number of groups to lower the information loss. Several groups may contain 2k or

more members. Any fixed-size microaggregation method can be used to further

partition oversized groups and reduce information loss. In Phase II, this study

employs Phase I to further partition. To use the Phase I process in Phase II efficiently,

this study constrains the size of oversized groups to be less than 4k. If the size of the

closest group to vector x has achieved 4k-1, then the second closest group to x will be

selected.

Theorem 2. Let n be the number of records, k be the minimum size of groups, and the

attribute number p be a constant. The time complexity of Phase II of TFRP is

O(
k
n2

+kn).

The proof of Theorem 2 is provided in Appendix D.

Example 3. Consider the same micro-data set as in Example 2 with k = 3. After Phase

I, TFRP generates three groups G1 = {A, B, C}, G2 = {J, H, I} and G3 = {E, D, F} as

shown in Fig. 2. In Phase II, TFRP computes the GSE values of the three groups to

obtain GSE(G1) = 5.33, GSE(G2) = 7.33 and GSE(G3) = 27.33, respectively.

Therefore, SSE1 = GSE(G1) + GSE(G2) + GSE(G3) = 40. TFRP checks G3, G2 and G1

(decreasing order of their GSE values) to see whether reassigning the members of a

selected group to their nearest groups can lower the information loss. For G3, the

member vectors “D”, “E” and “F” is closest to groups G1, G1 and G2, respectively. If

12

these vectors are reassigned to G1 and G2 to obtain two larger groups G1’ and G2’,

respectively, then we get GSE(G1’) + GSE(G2’) = 23.6 + 12.75 < 40. As shown in

Fig. 3, TFRP scatters G3 to reach a lower information loss. Since breaking G2’ or G1’

cannot acquire a better result, the process is terminated.

Fig 3. Example of re-grouping micro-data in Phase II of TFRP

The re-grouping technique of Phase II is a post-processing algorithm, which can

be applied to any fixed-size microaggregation method. This study integrates the post-

processing algorithm to the Diameter and Centroid methods and renames them

Diameter+ and Centroid+, respectively. Thus, Diameter+ and Centroid+ are also two-

phase methods.

Theorem 3. Let n be the number of records, k be the minimum size of groups, and the

attribute number p be a constant. If n>>k, then the time complexity of the TFRP

algorithm is O(
k
n2

).

Proof. The TFRP algorithm is constituted by Phase I and Phase II. According to

Theorems 1 and 2, the time complexity of TFRP is O(
k
n2

+
k
n2

+kn) = O(
k
n2

) since

n>>k.

Q.E.D

13

4. Experimental Results

This simulation used a 3.4 GHz Intel Pentium IV PC with 512 MB of main

memory, running the Windows XP Professional operating system, to compare the

performances of the Diameter, Diameter+, Centroid, Centroid+, and TFRP methods.

To highlight the different contributions between Phase I and Phase II of TFRP, this

experiment also implemented TFRP_I, which only included Phase I of TFRP. All

algorithms were coded in Visual C++ 6.0 and applied to process three real micro-data

sets and two images. To ensure the same unit of measurement for each attribute, all

attributes were standardized in advance. Let x(i) be the value of the i-th attribute Attri

of an arbitrary record x in a micro-data set. The standardization replaces each x(i) with

i

i

SD
Attrix −)(, where iAttr and iSD are the average and the standard deviation values of

Attri, respectively, before performing the microaggregation process.

4.1. Datasets

This experiment used three real micro-data sets (Tarragona, Census and EIA) that

have become usual reference datasets for testing multivariate microaggregation [5, 9,

15, 20]. The Tarragona dataset contains 834 companies’ figures in the Tarragona area

in 1995. Census and EIA were obtained from the Data Extraction System of the U.S.

Bureau of the Census and the U.S. Energy Information Authority, respectively [5].

In Section 4.2, for a certain k, TFRP seems more suitable for a sparse micro-data

set than for a dense one. To demonstrate the trend of TFRP, this experiment employs

two image data to simulate two sets of dense and sparse datasets. Users can divide an

image into several small blocks of an identical size. A block of the image data can be

regarded as a record of the micro-data set. Each pixel value of the block becomes one

of the attribute values of the record. Thus, users can divide an image into several

blocks to easily obtain a dense or sparse dataset by tuning the block size. This

experiment employed two famous images, Lena and Girl, of 512× 512 pixels with 256

gray levels (as shown in Fig. 4) to generate several datasets. Each image was divided

into various 2× 2 and 4× 4 blocks to obtain 4-dimensional dense and 16-dimensional

sparse datasets, respectively. To investigate scalability with respect to dataset size,

14

this simulation united two 4-dimensional datasets to create a large dataset named

Lena-Girl_2X2. Table 1 lists the summary of the datasets used in this experiment.

(a) Lena (b) Girl
Fig. 4. Images used

Table 1. Characteristics of experimental datasets

Dataset Record number Dimension
Tarragona 834 13

Census 1080 13
EIA 4092 11

Lena_2X2 65,535 4
Lena_4X4 16,384 16
Girl_2X2 65,535 4
Girl_4X4 16,384 16

Lena-Girl_2X2 131,070 4

4.2. Information loss comparison

Figures 5 through 7 plot the performance curves of information loss over various

k values with the six algorithms applied to Tarragona, Census, and EIA, respectively.

The performances of Diameter+, Centroid+, and TFRP always overcame that of

Diameter, Centroid, and TFRP_I, respectively. The post-processing technique can

reduce the information loss significantly for a large k value. In Fig. 5, TFRP_I had the

highest information loss when k < 5; TFRP performed best except where k = 3. In Fig.

6, TFRP also had the lowest information loss when k ≥ 10. For example, when k = 45,

TFRP had an information loss lower than the Diameter, Diameter+, Centroid,

Centroid+, and TFRP_I methods by 6.94%, 2.86%, 4.29%, 2.49%, and 0.57%,

respectively. The EIA dataset is known to be naturally clustered for k = 6; therefore,

15

the Diameter and Centroid methods performed better than TFRP. However, for a

small k value, such as k = 5 or k = 7, TFRP significantly outperformed the Diameter

and Centroid methods. In eight different k value scenarios (k = 5, 7, 9, 20, 35, 40, 45,

or 50), TFRP had the lowest information loss as shown in Fig. 7. For a small k value,

such as k = 3 to k = 6, TFRP_I performed the worst.

Tarragona

15%

20%

25%

30%

35%

3 4 5 6 7 8 9
k

In
fo

rm
at

io
n
 l
os

s
(S

SE
/S

S
T

Centroid
Centroid+
Diameter
Diameter+
TFRP_I

TFRP

Tarragona

30%

40%

50%

60%

70%

10 15 20 25 30 35 40 45 50
k

In
fo

rm
at

io
n

lo
ss

 (
SS

E
/S

S
T

Centroid
Centroid+
Diameter
Diameter+

TFRP_I
TFRP

(a) k value between 3 and 9 (b) k value between 10 and 50

Fig. 5. Information loss comparison using Tarragona

Census

5%

7%

9%

11%

13%

3 4 5 6 7 8 9
k

In
fo

rm
at

io
n

lo
ss

 (
SS

E
/S

ST
)

Centroid
Centroid+
Diameter
Diameter+
TFRP_I
TFRP

Census

12%

18%

24%

30%

36%

10 15 20 25 30 35 40 45 50
k

In
fo

rm
at

io
n
 lo

ss
 (

SS
E

/S
S
T

).

Centroid
Centroid+

Diameter
Diameter+
TFRP_I
TFRP

(a) k value between 3 and 9 (b) k value between 10 and 50

Fig. 6. Information loss comparison using Census

16

EIA

0%

1%

2%

3%

4%

3 4 5 6 7 8 9
k

In
fo

rm
at

io
n

lo
ss

 (
SS

E
/S

ST
)

Centroid
Centroid+
Diameter
Diameter+

TFRP_I
TFRP

EIA

2%

5%

8%

11%

14%

17%

10 15 20 25 30 35 40 45 50
k

In
fo

rm
at

io
n

lo
ss

 (
SS

E
/S

ST
).

Centroid
Centroid+
Diameter
Diameter+
TFRP_I
TFRP

(a) k value between 3 and 9 (b) k value between 10 and 50

Fig. 7. Information loss comparison using EIA

Table 2 lists the information loss values for Phase I and Phase II of TFRP using

Tarragona, Census, and EIA. Table 2 demonstrates that the second phase of TFRP

always improved the data quality from the first phase. For the two sparse datasets,

Tarragona and Census, the improvement was not very significant. These two datasets

have no noticeable natural clusters for a certain k. The EIA dataset is naturally

clustered for k = 6. Phase II reduced the information loss by only 0.18% from Phase I

for k = 6. For k = 5, 7, 8, or 9, the data quality refinement was significant.

The data distribution in Tarragona is more sparse than that in the Census. In Figs.

5 and 6, when the k value increased, there was a greater decrease in information loss

using TFRP compared to the other methods. Furthermore, for a certain k, TFRP was

more suitable for a sparse micro-data set than for a dense one. To demonstrate these

two trends of TFRP, this experiment also performed algorithms on two pairs of

datasets: Lena_2X2, Lena_4X4 and Girl_2X2, Girl_4X4. Similar results were

obtained, as shown in Figs. 8 and 9. In Fig. 8a, when k ≥ 60, TFRP was the best

algorithm; for k = 10, Centroid+ overcame the other methods. For a sparse dataset,

TFRP had the lowest information loss when k ≥ 20 as shown in Fig. 8b.

17

Table 2. Comparison of information loss (%) between Phase I and Phase II of TFRP

k
Tarragona Census EIA

Phase I
(TFRP_I)

Phase I+II
(TFRP)

Phase I
(TFRP_I)

Phase I+II
(TFRP)

Phase I
(TFRP_I)

Phase I+II
(TFRP)

3 17.228 16.881 5.931 5.803 0.530 0.428
4 19.396 19.181 7.880 7.638 0.661 0.599
5 22.110 21.847 9.357 8.980 1.651 0.910
6 26.220 25.971 10.623 10.357 1.416 1.238
7 27.695 27.636 11.874 11.476 2.348 1.728
8 29.625 29.441 12.775 12.411 2.729 1.920
9 31.303 31.247 13.699 13.360 2.959 2.151

10 33.186 33.088 14.442 13.959 3.242 2.590
15 39.166 39.120 17.606 17.216 5.198 4.922
20 43.315 43.264 20.289 19.629 6.567 6.518
25 47.551 47.438 21.795 21.460 8.472 8.443
30 49.554 49.466 23.474 23.068 10.202 10.015
35 52.693 52.590 24.474 24.184 11.416 10.710
40 54.809 54.731 25.638 25.188 11.802 11.761
45 56.880 56.867 27.291 26.721 13.224 13.194
50 58.597 58.568 28.310 28.224 14.171 14.122

Lena_2X2

0.10%

0.20%

0.30%

0.40%

0.50%

10 20 30 40 50 60 70 80
k

In
fo

rm
at

io
n
 l
o
ss

 (
S
S
E

/S
S
T

)

Centroid
Centroid+
Diameter
Diameter+
TFRP_I
TFRP

Lena_4X4

1.0%

2.0%

3.0%

4.0%

10 20 30 40 60 60 70 80
k

In
fo

rm
at

io
n
 l
os

s
(S

S
E

/S
S
T

)

Centroid
Centroid+
Diameter
Diameter+

TFRP_I
TFRP

(a) Dense dataset: Lena_2X2 (b) Sparse dataset: Lena_4X4

Fig. 8. Information loss comparison using Lena

18

Girl_2X2

0.05%

0.15%

0.25%

0.35%

10 20 30 40 50 60 70 80
k

In
fo

rm
at

io
n

lo
ss

 (
SS

E
/S

S
T

).

Centroid
Centroid+
Diameter
Diameter+
TFRP_I
TFRP

Girl_4X4

0.5%

1.0%

1.5%

2.0%

2.5%

10 20 30 40 50 60 70 80
k

In
fo

rm
at

io
n

lo
ss

 (
SS

E
/S

S
T

)

Centroid

Centroid+

Diameter

Diameter+

TFRP_I

TFRP

(a) Dense dataset: Girl_2X2 (b) Sparse dataset: Girl_4X4

Fig. 9. Information loss comparison using Girl

4.3. Running time comparison

Each algorithm in this experiment had the same data reading process, which read

the input micro-data set from disk. Therefore, to attain the running time of the three

algorithms on different datasets and to eliminate the effect of disk I/O, the running

time in this experiment did not include the cost to read the micro-data set from the

disk.

Figures 10a to 10c illustrate the running time curves over various k values with

the six algorithms applied to Tarragona, Census, and EIA, respectively. Each figure

employs a logarithmic scale on its y-axis. The TFRP_I algorithm always performed

the fastest, followed by TFRP. Centroid+ and Diameter+ performed slightly slower

than Centroid and Diameter, respectively. The running time of the second phase is

slight; thus, the second phase, which generally reduces the information loss, is

considered as a cost-effective process. The running times of the Diameter, Centroid,

and TFRP_I algorithms were consistent with the time complexity of O(
k
n3

), O(n2),

and O(
k
n2

), respectively. In Fig. 10, for k ≥ 25, increasing the k value for TFRP

resulted in almost no running time improvement. This seems to violate the time

complexity O(
k
n2

). In fact, TFRP performs too fast for small datasets resulting in the

Phase I process of TFRP do not dominate the overall performance. For a small

dataset, the time complexity of TFRP becomes O(
k
n2

+kn) according to Theorem 2.

For a large dataset, the portion of time complexity, O(kn), can be neglected, as shown

in Figs. 11 and 12.

19

Figures 11 and 12 demonstrate that TFRP performed faster than the Diameter

method by more than three orders of magnitude. TFRP overcame the Centroid

method, especially in a large k scenario. For example, in Fig. 11b where k = 10, the

execution time of Centroid was 3.52 times that of TFRP. Along with growth of the k

value, the difference increased to reach 12.84 times when k = 80. The running time

curves of Diameter and Diameter+ (or Centroid and Centroid+) nearly overlap,

because the second phase required less than 13 seconds to run.
Tarragona

0.001

0.010

0.100

1.000

5 10 15 20 25 30 35 40 45 50
k

R
un

ni
ng

 ti
m

e
(S

ec
.).

Centroid
Centroid+
Diameter
Diameter+
TFRP_I
TFRP

Census

0.001

0.010

0.100

1.000

5 10 15 20 25 30 35 40 45 50
k

R
un

ni
ng

 ti
m

e
(S

ec
.).

Centroid
Centroid+
Diameter
Diameter+
TFRP_I
TFRP

(a) Tarragona (b) Census

EIA

0.01

0.10

1.00

10.00

100.00

5 10 15 20 25 30 35 40 45 50
k

R
un

ni
ng

 ti
m

e
(S

ec
.).

Centroid
Centroid+
Diameter
Diameter+
TFRP_I
TFRP

(c) EIA

Fig. 10. Running time comparison using three real datasets

Lena_2X2

1

10

100

1000

10000

100000

10 20 30 40 50 60 70 80
k

R
un

ni
ng

 ti
m

e
(S

ec
.).

Centroid
Centroid+
Diameter
Diameter+
TFRP_I
TFRP

Lena_4X4

0.1

1.0

10.0

100.0

1000.0

10000.0

10 20 30 40 50 60 70 80
k

R
un

ni
ng

 ti
m

e
(S

ec
.)

Centroid
Centroid+
Diameter
Diameter+
TFRP_I
TFRP

(a) Lena_2X2 (b) Lena_4X4

Fig. 11. Running time comparison using Lena

20

Girl_2X2

1

10

100

1000

10000

100000

10 20 30 40 50 60 70 80
k

R
un

ni
ng

 ti
m

e
(S

ec
.).

Centroid
Centroid+
Diameter
Diameter+
TFRP_I
TFRP

Girl_4X4

0.1

1.0

10.0

100.0

1000.0

10000.0

10 20 30 40 50 60 70 80
k

R
un

ni
ng

 ti
m

e
(S

ec
.)

Centroid
Centroid+
Diameter
Diameter+
TFRP_I
TFRP

(a) Girl_2X2 (b) Girl_4X4

Fig. 12. Running time comparison using Girl

To investigate the impact of dataset size on the running time of these six

algorithms, this experiment executed algorithms on the Lena-Girl_2X2 dataset over

various sizes between 10,000 and 120,000 for k = 50. As shown in Fig. 13, the

Diameter method exhibited the cubic time behavior. For a certain k, although the

running times of TFRP and Centroid increased quadratically with the growth of the

dataset size, TFRP performed faster than Centroid by one order of magnitude.

Lena-Girl_2X2, k =50

0.01

0.10

1.00

10.00

100.00

1000.00

10000.00

100000.00

10000 20000 40000 60000 80000 100000 120000
Number of points

R
un

ni
ng

 ti
m

e
(S

ec
.)

Centroid
Centroid+
Diameter
Diameter+
TFRP_I
TFRP

Fig. 13. Scalability comparison using Lena-Girl_2X2

The goal of the first phase of TFRP mainly focuses on speeding up the

microaggregation process. Therefore, TFRP_I performed faster than all other methods

as shown in Figs. 10 through 13. Although the information loss of TFRP_I was less

than the Diameter and Centroid methods in Figs. 5b and 6b, TFRP_I still performed

the worst in many cases, especially in Figs. 7 and 9a. For example, in Fig. 7a with k =

21

9, TFRF_I had the highest information loss: 3.35% greater than Centroid, Diameter,

Centroid+, Diameter+, and TFRP by 0.28%, 0.45%, 1.01%, 1.03%, and 1.20%,

respectively. Therefore, the second phase is still necessary for improving the data

quality.

22

5. Conclusions

Statistic Disclosure Control (SDC) aims to release datasets without disclosing

individual information of high security. Microaggregation is a useful technique for

preserving the confidentiality of individual data. This study proposes a two-phase

method, Two Fixed Reference Points (TFRP), for microaggregation. In the first phase,

TFRP employs efficient techniques, such as median-of-medians and PDS, to speed up

the microaggregation process. The time complexity using TFRP is reduced to become

O(
k
n2

) for a large dataset. Furthermore, in the second phase, TFRP regroups several

groups by removing large GSE groups in order to the reduce information loss. The

post-processing technique of the second phase can be applied to any fixed-size

microaggregation method.

Simulation results reveal that the running time of the proposed method

outperforms that of the Diameter and Centroid methods. TFRP also reduces the

information loss significantly, particularly in sparse datasets with a large k value.

Although TFRP is fast, the time complexity of TFRP still reaches O(n2) for a certain

k. In the future, the authors will consider the development of superior algorithms that

can efficiently support a huge database.

23

Appendix A (pseudo-code of Phase I)

The pseudo-code of Phase I of TFRP is as follows:

Input: (1) SET: A micro-data set with p attributes and n data vectors

(2) k: minimum group size

Output: GSET: ⎥⎦
⎥

⎢⎣
⎢

k
n groups with size ≥ k

Procedure: Phase I
01. Compute the two references R1 and R2;
02. ∀x∈SET, compute d(x, R1) and sort them in decreasing order

on array Dis[1][];
03. ∀x∈SET, compute d(x, R2) and sort them in decreasing order

on array Dis[0][];
04. GSET := ∅;

05. for(i:=1 to ⎥⎦
⎥

⎢⎣
⎢

k
n

) {

06. nSwitch := i%2;
07. Select the initial vector xr from Dis[nSwitch][];
08. Gi := xr;
09. SET := SET-xr;
10. ∀x∈SET {
11. calculate d(x, xr); }
12. x’ = kth_element(SET);
13. ∀x∈SET {
14. if x.distance ≤ x’.distance {
15. Gi := Gi+x;
16. SET := SET-x; } }
17. GSET := GSET+Gi; }
18. Assign(SET);
19. return GSET;

In Lines 6 and 7, the process totally scans two sorted one-dimensional arrays

only once to obtain ⎥⎦
⎥

⎢⎣
⎢

k
n

 initial vectors. Line 12 employs median-of-medians to select

the kth-smallest distance to the initial point to speed up the process of forming a group

with size k. In Line 18, the Assign() function adds each of the remaining vectors to its

closest group. The pseudo-codes of functions Assign() and PDS() are as follows:

24

Assign(SET) {
01. ∀x∈SET {
02. dmin := ∞; // the initial minimum distance
03. ∀Gi∈GSET {
04. PDS(x, Gi.centroid, dmin);
05. if (dm(x, Gi.centroid)<dmin) {
06. dmin := dm(x, Gi.centroid);
07. x.closest := Gi; } }
08. Gi := Gi+x;
09. SET := SET-x; }
}

PDS(x, y, dmin) {
01. for(m:=1 to p) {
02. if (dm(x, y) > dmin) {
03. break; } }
}

Appendix B (time complexity of Phase I)

Theorem 1. Let n be the number of records, k be the minimum size of groups, and the

attribute number p be a constant. The time complexity of Phase I of TFRP is O(
k
n2

).

Proof. To analyze the time complexity of Phase I of TFRP, Phase I is divided into

four parts as follows:

(1) Lines 1-4: In Line 1 of Phase I, computing two reference points requires O(2×p×n)

= O(n). In Lines 2 and 3, Phase I calculates the distance of each vector to each

reference point and sorts all distances. Thus, the time complexity of Lines 2 and 3

is O(2×p×n + n×logn) = O(n×logn). The running time of Lines 2 and 3 dominates

the total running time of Lines 1 to 4. That is, O(n×logn).

(2) Lines 6-9: In Line 7, the process scans two sorted one-dimensional arrays once to

obtain ⎥⎦
⎥

⎢⎣
⎢

k
n

 initial vectors. Thus, the running time is O(2n) = O(n). Other lines

have no higher running time.

(3) Lines 10-17: In Line 11, Phase I computes distance n
k
n

×⎥⎦
⎥

⎢⎣
⎢ times. The running

time of Line 12 is O(pn
k
n

××⎥⎦
⎥

⎢⎣
⎢) = O(

k
n2

). In Line 12, selecting the kth-smallest

vector requires running time O(n). The total running time of Line 12 become

25

O(n
k
n

×⎥⎦
⎥

⎢⎣
⎢) = O(

k
n2

). In Lines 13 to 16, the running time of each iteration is O(n).

The time complexity of Lines 13 to 16 is O(n
k
n

×⎥⎦
⎥

⎢⎣
⎢) = O(

k
n2

). Therefore, the

expected time is O(
k
n2

).

(4) Line 18: In the worst case, Assign() computes the distances of k-1 vectors to ⎥⎦
⎥

⎢⎣
⎢

k
n

groups. Therefore, the expected time of Line 18 is O(⎥⎦
⎥

⎢⎣
⎢×−×

k
nkp)1() = O(n).

According to the four parts and
k
n2

 >> n×logn, the time complexity of Phase I is

dominated by O(
k
n2

).

Q.E.D

Appendix C (pseudo-code of Phase II)

The pseudo-code of Phase II of TFRP is as follows:

Input: GSET: The generated ⎥⎦
⎥

⎢⎣
⎢

k
n groups from Phase I with size ≥ k

Output: GSET’: The re-grouping set with a lower information loss

Procedure: Phase II
01. ∀G∈GSET, compute GSE(G) and sort them in decreasing order;

02. for(i:=1 to ⎥⎦
⎥

⎢⎣
⎢

k
n

) {

03. if(Gi.size ≥ 2k) {
04. continue; }
05. FakeAssign(Gi);
06. diff := Compare_SSE(Gi);
07. if(diff>0) {
08. ∀x∈Gi assign x to a proper group;
09. GSET := GSET-Gi; } }
10. ∀G∈GSET, if(Gi.size ≥ 2k) { // Gi.size < 4k
11. Execute the process of Phase I to partition group Gi; }
12. return GSET;

In Line 5, the function of FakeAssign() is similar to the function of Assign() in

Phase I. Instead of assigning a vector to its closest group, FakeAssign() keeps each

26

vector of the selected group until the process executes Line 8. Without redundancy,

this study omits the detailed pseudo-code of FakeAssign(). In Line 6, Compare_SSE()

checks to see whether the current SSE value is greater than that of the SSE value after

each member of Gi is reassigned to its closest group. The pseudo-code of

Compare_SSE() is as follows:

Compare_SSE(Gi) {
// Let x∈Gi, x.closest := Gj, where i≠j and Gj∈GSET
// Initially, Gj’==Gj
// ∀x∈Gi, Gj’ := Gj’ + x, where x.closest:= Gj and Gj.size<4k
01. SSE1 = ∑GSE(Gj)+GSE(Gi);
02. ∀x∈Gi, compute GSE(Gj’)
03. SSE2 = ∑GSE(Gj’);
04. return SSE1-SSE2;
}

The function Compare_SSE() computes how much SSE value can be reduced

after Gi is scattered. This function avoids re-computing the GSE values of groups

where the GSE value has not changed. The size of each group is constrained less than

4k to efficiently partition the oversize groups.

Appendix D (time complexity of Phase II)

Theorem 2. Let n be the number of records, k be the minimum size of groups, and the

attribute number p be a constant. The time complexity of Phase II of TFRP is

O(
k
n2

+kn).

Proof. The running time of Phase II is determined by Lines 1, 5, 6 and 11. The

discussion is as follows:

(1) Line 1: The running time of computing the GSE value of a group requires O(p×k).

The process totally computes the GSE values of ⎥⎦
⎥

⎢⎣
⎢

k
n groups and sorts them.

Therefore, the expected time of Line 1 is O(⎥⎦
⎥

⎢⎣
⎢×⎥⎦

⎥
⎢⎣
⎢+⎥⎦

⎥
⎢⎣
⎢××

k
n

k
n

k
nkp log) =

O(
k
n

k
nn log×+).

27

(2) Line 5: The time complexity of FakeAssign() is equal to that of the Assign()

function of Phase I. That is, O(n). Since Phase II executes FakeAssign() ⎥⎦
⎥

⎢⎣
⎢

k
n

times, the running time is O(n
k
n

×⎥⎦
⎥

⎢⎣
⎢) = O(

k
n2

).

(3) Line 6: In the worst case, Phase II executes the Compare_SSE() function O(
k
n
)

times. Compare_SSE() requires to compute the GSE values of 4k-1 groups with

size 4k-1. It has to compute n distances at most. Therefore, the running time is

O(
k
n ×p×(4k)2) = O(kn).

(4) Line 11: In the worst case, Phase II calls Phase I O(
k
n
) times. Furthermore, the

size of any oversized group is less than 4k. The running time of Line 11 becomes

O(2)4(log k
k

k
k
n
×) = O(n×logk).

According to the four cases, with
k
n2

 >>
k
n

k
nn log×+ and

k
n2

 >> n×logk, the time

complexity of Phase II is O(
k
n2

+kn).

Q.E.D

Acknowledgements

The authors would like to acknowledge the helpful comments made by the

anonymous reviewers of this paper.

28

References

 [1] N.R. Adam and J.C. Wortmann, “Security-control methods for statistical

databases: a comparative study,” ACM Computing Surveys, vol. 21, no. 4, pp.

515-556, 1989.

 [2] G. Aggarwal, T. Feder, K. Kenthapadi, R. Motwani, R. Panigrahy, D. Thomas,

and A. Zhu, “Approximation algorithm for k-anonymity,” Journal of Privacy

Technology, 2005.

 [3] M. Atallah, E. Bertino, A. Elmagarmid, M. Ibrahim, and V. Verykios, “Disclosure

limitation of sensitive rules,” in Proc. 1999 Workshop on Knowledge and Data

Engineering Exchange, Chicage, IL, pp. 45-52, November 1999.

 [4] C.-D. Bei and R.M. Gray, “An improvement of the minimum distortion encoding

algorithm for vector quantization,” IEEE Trans. Communications, vol. 33, no.

10, pp. 1132-1133, 1985.

 [5] R. Brand, J. Domingo-Ferrer, and J.M. Mateo-Sanz, “Reference data sets to test

and compare sdc methods for protection of numerical microdata,” European

Project IST-2000-25069 CASC, 2002. Available at: http://noen.vb.cbs.nl/casc

(accessed June 28, 2006).

 [6] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, “Introduction to

algorithms,” MIT Press, 2nd Edition, Cambridge, MA, 2003.

 [7] J. Domingo-Ferrer, “Advances in inference control in statistical database: an

overview,” in J. Domingo-Ferrer and V. Torra (Eds.), Lecture Notes in Computer

Sciences 3050 --- CASC Project Intl. Workshop on Privacy in Statistical

Database (PSD 2004), Springer-Verlag, Berlin, pp. 1-7, 2004.

 [8] J. Domingo-Ferrer, “Microaggregation: Achieving k-anonymity with quasi-

optimal data quality,” in Proc. 2006 European Conference on Quality in Survey

Statistics, Cardiff, UK, April 2006.

 [9] J. Domingo-Ferrer and J.M. Mateo-Sanz, “Practical data-oriented

microaggregation for statistical disclosure control,” IEEE Trans. Knowledge and

Data Engineering, vol. 14, no. 1, pp. 189-201, 2002.

29

[10] J. Domingo-Ferrer and V. Torra, “Ordinal, continuous and heterogenerous k-

anonymity through microaggregation,” Data Mining and Knowledge Discovery,

vol. 11, no. 2, pp. 195-202, 2005.

[11] G.T. Ducan and S. Mukherjee, “Optimal disclosure limitation strategy in

statistical databases: deterring tracker attacks through additive noise,” Journal of

the American Statistical Association, vol. 95, no. 451, pp. 720-729, 2000.

[12] S.L. Hansen and S. Mukherjee, “A polynomial algorithm for optimal univariate

microaggregation,” IEEE Trans. Knowledge and Data Engineering, vol. 15, no.

4, pp. 1043-1044, 2003.

[13] A.K. Jain, M.N. Murty, and P.J. Flynn, “Data clustering: a review,” ACM

Computer Surveys, vol. 31, no. 3, pp. 264-323, 1999.

[14] M. Kantardzic, “Data mining: concepts, models, methods, and algorithms,” John

Wiley & Sons, New York, 2002.

[15] M. Laszlo and S. Mukherjee, “Minimum spanning tree partitioning algorithm for

microaggregation,” IEEE Trans. Knowledge and Data Engineering, vol. 17, no.

7, pp. 902-911, 2005.

[16] C.K. Liew, U.J. Choi, and C.J. Liew, “A data distortion by probability

distribution,” ACM Trans. Database Systems, vol. 10, no. 3, pp. 395-411, 1985.

[17] A. Meyerson and R. Williams, “On the complexity of optimal k-anonymity,” in

Proc. 23rd ACM Symposium on Principles of Database Systems, Paris, France,

pp. 223-228, June 2004.

[18] A. Oganian and J. Domingo-Ferrer, “On the complexity of optimal

microaggregation for statistical disclosure control,” Statistical Journal of United

Nations Economic Commission for Europe, vol. 18, no. 4, pp. 345-354, 2001.

[19] P. Samarati, “Protecting resopndents’ identities in microdata release,” IEEE

Trans. Knowledge and Data Engineering, vol. 13, no. 6, pp. 1010-1027, 2001.

[20] A. Solanas, A. Martínez-Ballesté, J. Domingo-Ferrer, and J.M. Mateo-Sanz, “A

2d-tree-based blocking method for microaggregating very large data sets,” in

Proc. 1st Intl. Conf. on Availability, Reliability and Security, Los Alamitos, CA,

pp. 922-928, April 2006.

[21] L. Sweeney, “k-Anonymity: a model for protecting privacy,” Intl. Journal on

Uncertainty, Fuzziness and Knowledge-based Systems, vol. 10, no. 5, pp. 557-

570, 2002.

30

[22] J.F. Traub, Y. Yemini, and H. Wozniakowski, “The statistical security of a

statistical database,” ACM Trans. on Database Systems, vol. 9., no. 4, pp. 672-

679, 1984.

[23] V. Torra, “Microaggregation for categorical variables: A median based

approach,” in J. Domingo-Ferrer and V. Torra (Eds.), Lecture Notes in Computer

Sciences 3050 --- CASC Project Intl. Workshop on Privacy in Statistical

Database (PSD 2004), Springer-Verlag, Berlin, pp. 162-174, 2004.

[24] J.H. Ward, Jr., “Hierarchical grouping to optimize an objective function,”

Journal of the American Statistical Association, vol. 58, no. 301, pp. 236-244,

1963.

