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Abstract. Recently, the issue of Statistic Disclosure Control (SDC) has attracted much 

attention. SDC is a very important part of data security dealing with the protection of 

databases. Microaggregation for SDC techniques is widely used to protect confidentiality 

in statistical databases released for public use. The basic problem of microaggregation is 

that similar records are clustered into groups, and each group contains at least k records to 

prevent disclosure of individual information, where k is a pre-defined security threshold. 

For a certain k, an optimal multivariable microaggregation has the lowest information 

loss. The minimum information loss is an NP-hard problem. Existing fixed-size 

techniques can obtain a low information loss with O(n2) or O(n3/k) time complexity. To 

improve the execution time and lower information loss, this study proposes the Two 

Fixed Reference Points (TFRP) method, a two-phase algorithm for microaggregation. In 

the first phase, TFRP employs the pre-computing and median-of-medians techniques to 

efficiently shorten its running time to O(n2/k). To decrease information loss in the second 

phase, TFRP generates variable-size groups by removing the lower homogenous groups. 

Experimental results reveal that the proposed method is significantly faster than the 

Diameter and the Centroid methods. Running on several test datasets, TFRP also 

significantly reduces information loss, particularly in sparse datasets with a large k. 
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1. Introduction 

Recent developments in data mining techniques have enabled the rapid and 

efficient discovery of hidden knowledge from very large databases [14]. Users 

employing such techniques for databases can acquire sensitive knowledge [3]. Since 

many types of current research heavily depend on statistical data that protect the 

confidentiality of personal information [1, 11, 22], statistical disclosure control (SDC) 

has become an important data security issue [7, 16, 18]. 

Many government agencies and commercial organizations need to collect and 

analyze data about individuals to support their research activities. The collected 

individual data (micro-data) contain confidential information of individuals, such as 

income or type of disease. Each individual j is assigned a data vector Vj, which 

contains two kinds of variables: key variables, which identify the individual, and 

sensitive variables, which contain sensitive information about the individual [9]. 

Therefore, the direct release of databases for study may incur security risks. The 

challenge for SDC is to modify data in order to provide sufficient protection of 

sensitive information without seriously damaging the information used for data 

mining purposes [10].  

Database managers often remove explicit identifiers, such as names and phone 

numbers, to protect privacy. A released database that suppresses identifying attributes 

is not sufficient to preserve privacy. Linked together, public databases can narrow 

down or even identify individuals. An example in [19] demonstrates that users can re-

identify individuals from anonymous medical data by linking to an external voter list, 

using non-identifiable attributes such as zip code, birthday, and gender.  

One way to protect individuals is to mask the released database that achieves k-

anonymity. A release provides k-anonymity protection for k > 1 if each entity in the 

database is indistinguishable from at least k - 1 other entities in the database [21]. 

When an attribute value appears k or more times in a database, it is difficult to re-

identify individuals by linking to an external database. Several researchers use 

generalization and suppression techniques to implement k-anonymity [2, 17, 19, 21]. 

However, generalization and suppression approaches cause high information loss, 

especially on numerical attributes [8, 10].  
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Microaggregation, which satisfies k-anonymity [8, 10], is a widely used SDC 

technique for numerical data and has been extended for categorical data [10, 23]. 

Instead of releasing actual values of individual records, microaggregation clusters 

records into groups, and each attribute value of records in one group is replaced by the 

centroid of the group. For a certain k, each group contains at least k records to satisfy 

k-anonymity, where the confidentiality of each individual is protected.  

The problem of microaggregation differs from the classical clustering problem. In 

microaggregation, each group has at least k data points (data vectors) rather than to 

assign the number of groups. Given a security parameter k, an optimal 

microaggregation has minimum information loss (or highest data quality) at the fixed 

security level. Although an efficient algorithm exists for optimal univariate 

microaggregation [12], multivariate microaggregation has been proven as an NP-hard 

problem [18]. Therefore, several heuristic methods have been proposed for 

multivariate microaggregation [9, 15, 20].  

An optimal microaggregation has no group containing more than 2k-1 records 

since each group with size ≥ 2k can be partitioned in order to further reduce 

information loss [9]. Although each group is limited to a number of members between 

k and 2k-1, the possible partition number still grows exponentially with the number of 

data vectors [15]. Existing heuristic microaggregation methods can be categorized 

into two classes: fixed-size microaggregation [9] and variable-size microaggregation 

[15].  

The Diameter and the Centroid methods are two well-known fixed-size 

microaggregation techniques. Both have low information losses, but the time 

complexities of Diameter and Centroid are O(
k
n3

) and O(n2), respectively, which are 

too high to practice for a large database. Therefore, this study proposes a two-phase 

algorithm for microaggregation: the efficient Two Fixed Reference Points (TFRP) 

method. In the first phase, TFRP employs several techniques such as pre-computing, 

median-of medians, and partial distance to efficiently reduce the running time to 

O(
k
n2

). In the second phase, TFRP scatters the members of the low homogenous 

groups to the nearest groups to improve data quality.  

The rest of this paper is organized as follows: Section 2 introduces the 

background and the relative Diameter and Centroid methods. Section 3 then describes 
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the proposed Two Fixed Reference Points (TFRP) algorithm, which is a two-phase 

method, and analyzes its time complexity. In addition, Section 4 provides 

experimental results and evaluates the performance of the proposed algorithm. 

Finally, Section 5 presents conclusions. 
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2. Related Work 

2.1. General remarks 

Consider a statistical database with n records and p numerical attributes. Each 

record is a p-dimensional data point (data vector) in a p-dimensional space. 

Microaggregation involves combining n data points to form g groups of at least k size, 

where each data point belongs to exactly one group, called the k-partition [9]. Since 

each vector is replaced by the group centroid before publication, similar points appear 

in the same group; this results in low information loss. The squared Euclidean 

distance is widely used to measure the homogeneity within a group. Equation (1) 

describes the squared Euclidean distance between two p-dimensional vectors, x and y. 

The distance value between two vectors indicates the value of their squared Euclidean 

distance, except where noted. 

d(x, y) = 2yx − = ∑
=

−
p

i
iyix

1

2))()(( , (1) 

where x(i) and y(i) represent the attribute values of the i-th dimension of x and y, 

respectively. Equation (2) shows the within-group squared error (GSE) of a group Gi.  
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=

−
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where ni is the element number in the i-th group Gi, ni ≥ k, xij is the j-th element in Gi 

and ix  is the centroid of Gi. The optimal microaggregation is to reach the minimum 

total sum of the within-group squared errors (SSE). That is, 
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where g is the number of generated groups and ∑
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1
 = n. The total sum of square 

errors (SST) is as follows: 
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where x  is the centroid of the n vectors. The measure of information loss (IL) is 

defined as IL = SSE/SST. A low IL value signifies higher data quality of a released 

database. 
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Statistical agencies typically use the fixed-size technique to implement 

microaggregation [9]. A microaggregation method usually results in low information 

loss by fixing each group size to k. The Diameter and Centroid methods are two well-

known fixed-size microaggregation methods and two of the best approaches to 

achieve low information loss [9, 15]. A concise description is as follows: 

2.2. Diameter and Centroid methods 

In the Diameter method, the pair of initial points (xr, xs) with the longest squared 

Euclidean distance is selected. Then, two groups are formed with size k around xr and 

xs, respectively. One group, Gr, initially contains only one vector xr, and in each of the 

k-1 iterations, the vector closest to the centroid of Gr is added to Gr. The other group, 

Gs, which contains xs, is similarly formed. The process iteratively selects a pair of 

maximum distance vectors among the rest of vectors and forms two groups until less 

than k vectors remain. Each remaining vector is added to its nearest group. The time 

complexity of the Diameter method reaches O(
k
n3

) [15]. 

Instead of clustering two groups around the two extreme vectors in each iteration, 

the Centroid method selects a furthest vector from the centroid. Centroid, therefore, 

reduces the time complexity to O(n2) and still obtains a low information loss [15]. 

2.3. Minimum spanning tree microaggregation 

If the size of each group generated by clustering methods (such as [13, 24]) can 

be contained the size of each group, such clustering methods may be good heuristic 

methods for microaggregation. The partitioning minimum spanning tree (MST) is one 

of the most used methods for clustering. Therefore, Laszlo and Mukherjee proposed a 

variable-size minimum spanning tree method for microaggregation [15].  

They remove edges from the MST in the order of decreasing length. To satisfy 

the group size constraint, the adapted algorithm cuts the selected edges if the 

separation produces two admissible sub-trees, which both contain at least k points; 

otherwise, the edge is skipped. Thus, each resulting tree is a cluster and conforms the 

requirement of the minimum group size constraint.  

The MST partitioning algorithm may generate several large groups, which have 

size ≥ 2k. To reduce the information loss, users can employ one of the fixed-size 
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methods to further separate from the oversize groups. However, the MST partitioning 

method has higher information loss than that of Diameter, unless the distribution of 

records in the micro-data set is well-separated natural clusters. Furthermore, the 

running time of MST is longer than that of Centroid. 
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3. Two Fixed Reference Points Method 

This study proposes the Two Fixed Reference Points (TFRP) method to speed the 

process performance and reduce information loss. TFRP is a two-phase algorithm. In 

the first phase, TFRP uses a novel fixed-size algorithm to shorten the running time 

efficiently. In the second phase, TFRP reduces the number of groups generated by the 

first phase to improve the data quality. Furthermore, the post-processing technique of 

the second phase can be applied to any microaggregation method to reduce 

information loss.  

We describe the two-phase algorithm as follows. In the first phase, TFRP selects 

two fixed reference points, R1 and R2, which are two extreme points calculated from 

the micro-data set. Let a micro-data set contain p numerical attributes and n records. 

The two extreme values, GMin and GMax, are defined as follows: 

GMin = min{xj(i) | 1 ≤ j ≤ n and 1 ≤ i ≤ p}, and 

GMax = max{xj(i) | 1 ≤ j ≤ n and 1 ≤ i ≤ p}, 

where xj(i) denotes the i-th attribute value for each vector xj in the micro-data set. That 

is, GMin is the minimum attribute value over all micro-data set. Similarly, GMax is 

the maximum attribute value over all micro-data set. The p attribute values of the two 

reference points become 

R1 = {GMin, GMin, …, GMin}, and 

R2 = {GMax, GMax, …, GMax}. 

If GMin = GMax, than R1 = R2. To avoid this situation, the record number of a 

micro-data set must be greater than one. After generating the two reference points, we 

can employ several techniques to reduce the running time of TFRP. 

Example 1. Consider the nine two-dimensional vectors in Fig. 1. Each vector has a 

literal label and a number pair to show its position in the two-dimensional coordinate 

system. According to the above definition, GMin = min{11, 9, 11, 8, 12, 6, 9, 6, 8, 10, 

5, 4, 4, 3, 2, 5, 1, 3} = 1 and GMax = max{11, 9, 11, 8, 12, 6, 9, 6, 8, 10, 5, 4, 4, 3, 2, 

5, 1, 3} = 12. Therefore, R1 = {1, 1} and R2 = {12, 12}. 
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Fig. 1. Example of micro-data 

 

3.1. Reduce the running time 

In the first phase, TFRP is a fixed-size microaggregation method and requires 

⎥⎦
⎥

⎢⎣
⎢

k
n  iterations to generate ⎥⎦

⎥
⎢⎣
⎢
k
n  groups. In each iteration, TFRP selects the initial point 

xr, the furthest vector from a reference point, then computes the distance of each 

vector to xr. Unlike the Diameter or the Centroid methods, which select the closest 

vector to the centroid of Gr, TFRP selects the k-1 closest vectors to xr and xr itself to 

form group Gr. After ⎥⎦
⎥

⎢⎣
⎢

k
n  iterations, each remaining (n mod k) vector is added to its 

nearest group.  

Since the two reference points R1 and R2 are fixed, to efficiently obtain each 

initial vector, this study employs two one-dimensional arrays to pre-compute, sort, 

and store the distances of R1 and R2 to all vectors. Furthermore, to obtain the k-1 

closest vectors to the initial vector efficiently, the max-priority queue or the median-

of-medians techniques [6] can be employed to speed up the process. The time 

complexity of the median-of-medians algorithm is linear; thus, this study implements 

the selection algorithm to TFRP. The two techniques cannot be applied to the 

Diameter or Centroid methods, because they must re-compute the centroid of a group 

while a new element is added. The pseudo-code of the first phase of TFRP is provided 

in Appendix A.  

 

The algorithm of the first phase of TFRP is as follows: 

Algorithm 1: Phase I of TFRP 
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1. Compute the two reference points R1 and R2. All vectors are assigned to a set 

(SET).  

2. Select a reference point. 

3. Select an initial point xi from the reference point. 

4. Calculate the distance of each vector to xi.  

5. Select k-1 closest vectors together with xi to form a group, and remove the k 

vectors from SET. 

6. Select another reference point, then go to Step 2 until |SET|<k. 

7. Assign each remaining vector of SET to its closest group. 

 

In Step 7, each remaining vector is assigned to its closest group. To avoid further 

unnecessary calculation of distances, this study applies the partial distance search 

(PDS) technique [4] for early termination of the computation of the squared Euclidean 

distance between the centroid of each group and a vector. Let the m-dimensional 

partial distance between x and y be dm(x, y) = ∑
=

−
m

i
ii yx

1

2)( , where 1 ≤ m ≤ p. Assuming 

that the smallest distance found so far to the vector x is dmin’, if the centroid ci of a 

group satisfies the condition dm(x, ci) > dmin’, then group Gi must be not the closest 

group to x. Accordingly, the process can reject Gi without calculating the real distance 

between x and ci.  

 

Theorem 1. Let n be the number of records, k be the minimum size of groups, and the 

attribute number p be a constant. The time complexity of Phase I of TFRP is O(
k
n2

).  

The proof of Theorem 1 is provided in Appendix B. Example 2 presents a simple 

example of how to work on Phase I of TFRP. Based on the grouping result of Phase I, 

the second phase of TFRP employs an adjusted strategy to lower the information loss. 

The algorithm of the second phase appears in Section 3.2.  

Example 2. Consider the sample micro-data set in Fig. 1 with k = 3. The first phase of 

TFRP is a fixed-size microaggregation. TFRP first generates the two reference points, 

R1 and R2. Then, TFRP assigns the furthest vector “A” from R1 as an initial vector. 

Starting from vector “A”, the closest two vectors are vector “B” and “C”. Therefore, 

we get the first group, G1 = {A, B, C}. Next, TFRP selects the vector “J,” which is the 

furthest vector from another reference point, R2, to form the second group, G2 = {J, H, 
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I}. TFRP employs the two reference points in turn to get the initial vector of each 

group. The last group, G3, is {E, D, F} as shown in Fig. 2. The first element of each 

group is the initial vector. If the number of the remaining vectors is less than k, then 

each vector is assigned to a corresponding group where the group’s centroid is closest 

to the vector. 

 

 
Fig. 2. Example of grouping micro-data in Phase I of TFRP 

 

3.2. Decrease the information loss 

After Phase I, TFRP generates ⎥⎦
⎥

⎢⎣
⎢

k
n  groups with size ≥ k. However, groups with 

size k do not always have the lowest SSE value. Several groups may have a large GSE 

value. Reassigning the members of a group with a large GSE value to the nearest 

groups may reduce the total SSE value. Therefore, to reduce the information loss in 

the second phase, TFRP sorts groups in decreasing order of their GSE values. Then, 

TFRP selects the groups in order and to check whether reassigning the members of 

the selected group to their nearest groups can improve the data quality. If scattering 

the selected group cannot reduce the information loss, then TFRP checks the next 

group; otherwise, TFRP scatters the group. The process terminates after each group is 

checked. The pseudo-code of the second phase of TFRP is presented in Appendix C.  
 

The algorithm of the second phase of TFRP is as follows: 

Algorithm 2: Phase II of TFRP 

1. Compute GSE of each group, and sort them in decreasing order. 
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2. Select a group Gi in order and compute the current total sum of the within-group 

squared errors (SSE1). 

3. Calculate the distance of each vector of Gi to any other group. 

4. Assign each vector of Gi to its closest group provisionally, and compute the 

current total sum of the within-group squared errors (SSE2). 

5. If SSE1 > SSE2, then assign each vector of Gi to its closest group; otherwise, 

regain Gi. 

6. Return to Step 2 and repeat until each group is checked. 
 

In Step 4, TFRP only calculates the GSE values of influenced groups to avoid 

redundantly computing the GSE values of changeless groups. The pseudo-code of 

Step 4, Compare_SSE(), is provided in Appendix C. In Step 5, scattering a group can 

reduce the information loss in each iteration. The process of Phase II reduces the 

number of groups to lower the information loss. Several groups may contain 2k or 

more members. Any fixed-size microaggregation method can be used to further 

partition oversized groups and reduce information loss. In Phase II, this study 

employs Phase I to further partition. To use the Phase I process in Phase II efficiently, 

this study constrains the size of oversized groups to be less than 4k. If the size of the 

closest group to vector x has achieved 4k-1, then the second closest group to x will be 

selected. 
 

Theorem 2. Let n be the number of records, k be the minimum size of groups, and the 

attribute number p be a constant. The time complexity of Phase II of TFRP is 

O(
k
n2

+kn).  

The proof of Theorem 2 is provided in Appendix D. 

Example 3. Consider the same micro-data set as in Example 2 with k = 3. After Phase 

I, TFRP generates three groups G1 = {A, B, C}, G2 = {J, H, I} and G3 = {E, D, F} as 

shown in Fig. 2. In Phase II, TFRP computes the GSE values of the three groups to 

obtain GSE(G1) = 5.33, GSE(G2) = 7.33 and GSE(G3) = 27.33, respectively. 

Therefore, SSE1 = GSE(G1) + GSE(G2) + GSE(G3) = 40. TFRP checks G3, G2 and G1 

(decreasing order of their GSE values) to see whether reassigning the members of a 

selected group to their nearest groups can lower the information loss. For G3, the 

member vectors “D”, “E” and “F” is closest to groups G1, G1 and G2, respectively. If 
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these vectors are reassigned to G1 and G2 to obtain two larger groups G1’ and G2’, 

respectively, then we get GSE(G1’) + GSE(G2’) = 23.6 + 12.75 < 40. As shown in 

Fig. 3, TFRP scatters G3 to reach a lower information loss. Since breaking G2’ or G1’ 

cannot acquire a better result, the process is terminated. 

 
Fig 3. Example of re-grouping micro-data in Phase II of TFRP 

 

The re-grouping technique of Phase II is a post-processing algorithm, which can 

be applied to any fixed-size microaggregation method. This study integrates the post-

processing algorithm to the Diameter and Centroid methods and renames them 

Diameter+ and Centroid+, respectively. Thus, Diameter+ and Centroid+ are also two-

phase methods. 

Theorem 3. Let n be the number of records, k be the minimum size of groups, and the 

attribute number p be a constant. If n>>k, then the time complexity of the TFRP 

algorithm is O(
k
n2

). 

Proof. The TFRP algorithm is constituted by Phase I and Phase II. According to 

Theorems 1 and 2, the time complexity of TFRP is O(
k
n2

+
k
n2

+kn) = O(
k
n2

) since 

n>>k. 

Q.E.D 
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4. Experimental Results 

This simulation used a 3.4 GHz Intel Pentium IV PC with 512 MB of main 

memory, running the Windows XP Professional operating system, to compare the 

performances of the Diameter, Diameter+, Centroid, Centroid+, and TFRP methods. 

To highlight the different contributions between Phase I and Phase II of TFRP, this 

experiment also implemented TFRP_I, which only included Phase I of TFRP. All 

algorithms were coded in Visual C++ 6.0 and applied to process three real micro-data 

sets and two images. To ensure the same unit of measurement for each attribute, all 

attributes were standardized in advance. Let x(i) be the value of the i-th attribute Attri 

of an arbitrary record x in a micro-data set. The standardization replaces each x(i) with 

i

i

SD
Attrix −)( , where iAttr  and iSD  are the average and the standard deviation values of 

Attri, respectively, before performing the microaggregation process.  

 

4.1. Datasets 

This experiment used three real micro-data sets (Tarragona, Census and EIA) that 

have become usual reference datasets for testing multivariate microaggregation [5, 9, 

15, 20]. The Tarragona dataset contains 834 companies’ figures in the Tarragona area 

in 1995. Census and EIA were obtained from the Data Extraction System of the U.S. 

Bureau of the Census and the U.S. Energy Information Authority, respectively [5]. 

In Section 4.2, for a certain k, TFRP seems more suitable for a sparse micro-data 

set than for a dense one. To demonstrate the trend of TFRP, this experiment employs 

two image data to simulate two sets of dense and sparse datasets. Users can divide an 

image into several small blocks of an identical size. A block of the image data can be 

regarded as a record of the micro-data set. Each pixel value of the block becomes one 

of the attribute values of the record. Thus, users can divide an image into several 

blocks to easily obtain a dense or sparse dataset by tuning the block size. This 

experiment employed two famous images, Lena and Girl, of 512× 512 pixels with 256 

gray levels (as shown in Fig. 4) to generate several datasets. Each image was divided 

into various 2× 2 and 4× 4 blocks to obtain 4-dimensional dense and 16-dimensional 

sparse datasets, respectively. To investigate scalability with respect to dataset size, 
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this simulation united two 4-dimensional datasets to create a large dataset named 

Lena-Girl_2X2. Table 1 lists the summary of the datasets used in this experiment. 

(a) Lena (b) Girl 
Fig. 4. Images used 

 

Table 1. Characteristics of experimental datasets 

Dataset Record number Dimension 
Tarragona 834 13 

Census 1080 13 
EIA 4092 11 

Lena_2X2 65,535 4 
Lena_4X4 16,384 16 
Girl_2X2 65,535 4 
Girl_4X4 16,384 16

Lena-Girl_2X2 131,070 4 
 

4.2. Information loss comparison 

Figures 5 through 7 plot the performance curves of information loss over various 

k values with the six algorithms applied to Tarragona, Census, and EIA, respectively. 

The performances of Diameter+, Centroid+, and TFRP always overcame that of 

Diameter, Centroid, and TFRP_I, respectively. The post-processing technique can 

reduce the information loss significantly for a large k value. In Fig. 5, TFRP_I had the 

highest information loss when k < 5; TFRP performed best except where k = 3. In Fig. 

6, TFRP also had the lowest information loss when k ≥ 10. For example, when k = 45, 

TFRP had an information loss lower than the Diameter, Diameter+, Centroid, 

Centroid+, and TFRP_I methods by 6.94%, 2.86%, 4.29%, 2.49%, and 0.57%, 

respectively. The EIA dataset is known to be naturally clustered for k = 6; therefore, 
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the Diameter and Centroid methods performed better than TFRP. However, for a 

small k value, such as k = 5 or k = 7, TFRP significantly outperformed the Diameter 

and Centroid methods. In eight different k value scenarios (k = 5, 7, 9, 20, 35, 40, 45, 

or 50), TFRP had the lowest information loss as shown in Fig. 7. For a small k value, 

such as k = 3 to k = 6, TFRP_I performed the worst. 
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Fig. 5. Information loss comparison using Tarragona 
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Fig. 6. Information loss comparison using Census 
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Fig. 7. Information loss comparison using EIA 

 
Table 2 lists the information loss values for Phase I and Phase II of TFRP using 

Tarragona, Census, and EIA. Table 2 demonstrates that the second phase of TFRP 

always improved the data quality from the first phase. For the two sparse datasets, 

Tarragona and Census, the improvement was not very significant. These two datasets 

have no noticeable natural clusters for a certain k. The EIA dataset is naturally 

clustered for k = 6. Phase II reduced the information loss by only 0.18% from Phase I 

for k = 6. For k = 5, 7, 8, or 9, the data quality refinement was significant.  

The data distribution in Tarragona is more sparse than that in the Census. In Figs. 

5 and 6, when the k value increased, there was a greater decrease in information loss 

using TFRP compared to the other methods. Furthermore, for a certain k, TFRP was 

more suitable for a sparse micro-data set than for a dense one. To demonstrate these 

two trends of TFRP, this experiment also performed algorithms on two pairs of 

datasets: Lena_2X2, Lena_4X4 and Girl_2X2, Girl_4X4. Similar results were 

obtained, as shown in Figs. 8 and 9. In Fig. 8a, when k ≥ 60, TFRP was the best 

algorithm; for k = 10, Centroid+ overcame the other methods. For a sparse dataset, 

TFRP had the lowest information loss when k ≥ 20 as shown in Fig. 8b.  
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Table 2. Comparison of information loss (%) between Phase I and Phase II of TFRP 

k 
Tarragona Census EIA 

Phase I 
(TFRP_I) 

Phase I+II
(TFRP) 

Phase I 
(TFRP_I)

Phase I+II
(TFRP) 

Phase I 
(TFRP_I)

Phase I+II 
(TFRP) 

3 17.228 16.881 5.931 5.803 0.530 0.428 
4 19.396 19.181 7.880 7.638 0.661 0.599 
5 22.110 21.847 9.357 8.980 1.651 0.910 
6 26.220 25.971 10.623 10.357 1.416 1.238 
7 27.695 27.636 11.874 11.476 2.348 1.728 
8 29.625 29.441 12.775 12.411 2.729 1.920 
9 31.303 31.247 13.699 13.360 2.959 2.151 

10 33.186 33.088 14.442 13.959 3.242 2.590 
15 39.166 39.120 17.606 17.216 5.198 4.922 
20 43.315 43.264 20.289 19.629 6.567 6.518 
25 47.551 47.438 21.795 21.460 8.472 8.443 
30 49.554 49.466 23.474 23.068 10.202 10.015 
35 52.693 52.590 24.474 24.184 11.416 10.710 
40 54.809 54.731 25.638 25.188 11.802 11.761 
45 56.880 56.867 27.291 26.721 13.224 13.194 
50 58.597 58.568 28.310 28.224 14.171 14.122 
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(a) Dense dataset: Lena_2X2   (b) Sparse dataset: Lena_4X4 

Fig. 8. Information loss comparison using Lena  
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(a) Dense dataset: Girl_2X2    (b) Sparse dataset: Girl_4X4 

Fig. 9. Information loss comparison using Girl 
 

4.3. Running time comparison 

Each algorithm in this experiment had the same data reading process, which read 

the input micro-data set from disk. Therefore, to attain the running time of the three 

algorithms on different datasets and to eliminate the effect of disk I/O, the running 

time in this experiment did not include the cost to read the micro-data set from the 

disk.  

Figures 10a to 10c illustrate the running time curves over various k values with 

the six algorithms applied to Tarragona, Census, and EIA, respectively. Each figure 

employs a logarithmic scale on its y-axis. The TFRP_I algorithm always performed 

the fastest, followed by TFRP. Centroid+ and Diameter+ performed slightly slower 

than Centroid and Diameter, respectively. The running time of the second phase is 

slight; thus, the second phase, which generally reduces the information loss, is 

considered as a cost-effective process. The running times of the Diameter, Centroid, 

and TFRP_I algorithms were consistent with the time complexity of O(
k
n3

), O(n2), 

and O(
k
n2

), respectively. In Fig. 10, for k ≥ 25, increasing the k value for TFRP 

resulted in almost no running time improvement. This seems to violate the time 

complexity O(
k
n2

). In fact, TFRP performs too fast for small datasets resulting in the 

Phase I process of TFRP do not dominate the overall performance. For a small 

dataset, the time complexity of TFRP becomes O(
k
n2

+kn) according to Theorem 2. 

For a large dataset, the portion of time complexity, O(kn), can be neglected, as shown 

in Figs. 11 and 12.  
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Figures 11 and 12 demonstrate that TFRP performed faster than the Diameter 

method by more than three orders of magnitude. TFRP overcame the Centroid 

method, especially in a large k scenario. For example, in Fig. 11b where k = 10, the 

execution time of Centroid was 3.52 times that of TFRP. Along with growth of the k 

value, the difference increased to reach 12.84 times when k = 80. The running time 

curves of Diameter and Diameter+ (or Centroid and Centroid+) nearly overlap, 

because the second phase required less than 13 seconds to run.  
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(c) EIA 

Fig. 10. Running time comparison using three real datasets 
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(a) Lena_2X2      (b) Lena_4X4 

Fig. 11. Running time comparison using Lena 
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(a) Girl_2X2      (b) Girl_4X4 

Fig. 12. Running time comparison using Girl 

 

To investigate the impact of dataset size on the running time of these six 

algorithms, this experiment executed algorithms on the Lena-Girl_2X2 dataset over 

various sizes between 10,000 and 120,000 for k = 50. As shown in Fig. 13, the 

Diameter method exhibited the cubic time behavior. For a certain k, although the 

running times of TFRP and Centroid increased quadratically with the growth of the 

dataset size, TFRP performed faster than Centroid by one order of magnitude.  
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Fig. 13. Scalability comparison using Lena-Girl_2X2 

 

The goal of the first phase of TFRP mainly focuses on speeding up the 

microaggregation process. Therefore, TFRP_I performed faster than all other methods 

as shown in Figs. 10 through 13. Although the information loss of TFRP_I was less 

than the Diameter and Centroid methods in Figs. 5b and 6b, TFRP_I still performed 

the worst in many cases, especially in Figs. 7 and 9a. For example, in Fig. 7a with k = 
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9, TFRF_I had the highest information loss: 3.35% greater than Centroid, Diameter, 

Centroid+, Diameter+, and TFRP by 0.28%, 0.45%, 1.01%, 1.03%, and 1.20%, 

respectively. Therefore, the second phase is still necessary for improving the data 

quality. 
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5. Conclusions 

Statistic Disclosure Control (SDC) aims to release datasets without disclosing 

individual information of high security. Microaggregation is a useful technique for 

preserving the confidentiality of individual data. This study proposes a two-phase 

method, Two Fixed Reference Points (TFRP), for microaggregation. In the first phase, 

TFRP employs efficient techniques, such as median-of-medians and PDS, to speed up 

the microaggregation process. The time complexity using TFRP is reduced to become 

O(
k
n2

) for a large dataset. Furthermore, in the second phase, TFRP regroups several 

groups by removing large GSE groups in order to the reduce information loss. The 

post-processing technique of the second phase can be applied to any fixed-size 

microaggregation method.  

Simulation results reveal that the running time of the proposed method 

outperforms that of the Diameter and Centroid methods. TFRP also reduces the 

information loss significantly, particularly in sparse datasets with a large k value. 

Although TFRP is fast, the time complexity of TFRP still reaches O(n2) for a certain 

k. In the future, the authors will consider the development of superior algorithms that 

can efficiently support a huge database.  
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Appendix A (pseudo-code of Phase I) 

The pseudo-code of Phase I of TFRP is as follows: 

Input: (1) SET: A micro-data set with p attributes and n data vectors  

(2) k: minimum group size 

Output: GSET: ⎥⎦
⎥

⎢⎣
⎢

k
n  groups with size ≥ k 

Procedure: Phase I 
01. Compute the two references R1 and R2; 
02. ∀x∈SET, compute d(x, R1) and sort them in decreasing order 

on array Dis[1][]; 
03. ∀x∈SET, compute d(x, R2) and sort them in decreasing order 

on array Dis[0][]; 
04. GSET := ∅; 

05. for(i:=1 to ⎥⎦
⎥

⎢⎣
⎢

k
n

) { 

06.  nSwitch := i%2; 
07.  Select the initial vector xr from Dis[nSwitch][]; 
08.  Gi := xr; 
09.  SET := SET-xr; 
10.  ∀x∈SET { 
11.   calculate d(x, xr); }   
12.  x’ = kth_element(SET);  
13.  ∀x∈SET { 
14.   if x.distance ≤ x’.distance { 
15.    Gi := Gi+x; 
16.    SET := SET-x; } } 
17.  GSET := GSET+Gi; } 
18. Assign(SET); 
19. return GSET; 
 

In Lines 6 and 7, the process totally scans two sorted one-dimensional arrays 

only once to obtain ⎥⎦
⎥

⎢⎣
⎢

k
n

 initial vectors. Line 12 employs median-of-medians to select 

the kth-smallest distance to the initial point to speed up the process of forming a group 

with size k. In Line 18, the Assign() function adds each of the remaining vectors to its 

closest group. The pseudo-codes of functions Assign() and PDS() are as follows: 
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Assign(SET) { 
01. ∀x∈SET { 
02.  dmin := ∞; // the initial minimum distance 
03.  ∀Gi∈GSET { 
04.   PDS(x, Gi.centroid, dmin); 
05.   if (dm(x, Gi.centroid)<dmin) { 
06.    dmin := dm(x, Gi.centroid); 
07.    x.closest := Gi; } } 
08.  Gi := Gi+x; 
09.  SET := SET-x; } 
} 
 
PDS(x, y, dmin) { 
01. for(m:=1 to p) {  
02.  if (dm(x, y) > dmin) {  
03.   break; } } 
} 

 

Appendix B (time complexity of Phase I) 

Theorem 1. Let n be the number of records, k be the minimum size of groups, and the 

attribute number p be a constant. The time complexity of Phase I of TFRP is O(
k
n2

).  

Proof. To analyze the time complexity of Phase I of TFRP, Phase I is divided into 

four parts as follows: 

(1) Lines 1-4: In Line 1 of Phase I, computing two reference points requires O(2×p×n) 

= O(n). In Lines 2 and 3, Phase I calculates the distance of each vector to each 

reference point and sorts all distances. Thus, the time complexity of Lines 2 and 3 

is O(2×p×n + n×logn) = O(n×logn). The running time of Lines 2 and 3 dominates 

the total running time of Lines 1 to 4. That is, O(n×logn). 

(2) Lines 6-9: In Line 7, the process scans two sorted one-dimensional arrays once to 

obtain ⎥⎦
⎥

⎢⎣
⎢

k
n

 initial vectors. Thus, the running time is O(2n) = O(n). Other lines 

have no higher running time. 

(3) Lines 10-17: In Line 11, Phase I computes distance n
k
n

×⎥⎦
⎥

⎢⎣
⎢  times. The running 

time of Line 12 is O( pn
k
n

××⎥⎦
⎥

⎢⎣
⎢ ) = O(

k
n2

). In Line 12, selecting the kth-smallest 

vector requires running time O(n). The total running time of Line 12 become 
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O( n
k
n

×⎥⎦
⎥

⎢⎣
⎢ ) = O(

k
n2

). In Lines 13 to 16, the running time of each iteration is O(n). 

The time complexity of Lines 13 to 16 is O( n
k
n

×⎥⎦
⎥

⎢⎣
⎢ ) = O(

k
n2

). Therefore, the 

expected time is O(
k
n2

). 

(4) Line 18: In the worst case, Assign() computes the distances of k-1 vectors to ⎥⎦
⎥

⎢⎣
⎢

k
n  

groups. Therefore, the expected time of Line 18 is O( ⎥⎦
⎥

⎢⎣
⎢×−×

k
nkp )1( ) = O(n). 

According to the four parts and 
k
n2

 >> n×logn, the time complexity of Phase I is 

dominated by O(
k
n2

). 

Q.E.D 

Appendix C (pseudo-code of Phase II) 

The pseudo-code of Phase II of TFRP is as follows: 

Input: GSET: The generated ⎥⎦
⎥

⎢⎣
⎢

k
n  groups from Phase I with size ≥ k 

Output: GSET’: The re-grouping set with a lower information loss 

Procedure: Phase II 
01. ∀G∈GSET, compute GSE(G) and sort them in decreasing order; 

02. for(i:=1 to ⎥⎦
⎥

⎢⎣
⎢

k
n

) { 

03.  if(Gi.size ≥ 2k) { 
04.   continue; } 
05.  FakeAssign(Gi); 
06.  diff := Compare_SSE(Gi); 
07.  if(diff>0) {  
08.   ∀x∈Gi assign x to a proper group; 
09.   GSET := GSET-Gi; } } 
10. ∀G∈GSET, if(Gi.size ≥ 2k) { // Gi.size < 4k 
11.  Execute the process of Phase I to partition group Gi; } 
12. return GSET; 
 

In Line 5, the function of FakeAssign() is similar to the function of Assign() in 

Phase I. Instead of assigning a vector to its closest group, FakeAssign() keeps each 
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vector of the selected group until the process executes Line 8. Without redundancy, 

this study omits the detailed pseudo-code of FakeAssign(). In Line 6, Compare_SSE() 

checks to see whether the current SSE value is greater than that of the SSE value after 

each member of Gi is reassigned to its closest group. The pseudo-code of 

Compare_SSE() is as follows: 

 
Compare_SSE(Gi) { 
// Let x∈Gi, x.closest := Gj, where i≠j and Gj∈GSET 
// Initially, Gj’==Gj 
// ∀x∈Gi, Gj’ := Gj’ + x, where x.closest:= Gj and Gj.size<4k 
01. SSE1 = ∑GSE(Gj)+GSE(Gi); 
02. ∀x∈Gi, compute GSE(Gj’) 
03. SSE2 = ∑GSE(Gj’); 
04. return SSE1-SSE2; 
} 

 

The function Compare_SSE() computes how much SSE value can be reduced 

after Gi is scattered. This function avoids re-computing the GSE values of groups 

where the GSE value has not changed. The size of each group is constrained less than 

4k to efficiently partition the oversize groups. 

Appendix D (time complexity of Phase II) 

Theorem 2. Let n be the number of records, k be the minimum size of groups, and the 

attribute number p be a constant. The time complexity of Phase II of TFRP is 

O(
k
n2

+kn).  

Proof. The running time of Phase II is determined by Lines 1, 5, 6 and 11. The 

discussion is as follows: 

(1) Line 1: The running time of computing the GSE value of a group requires O(p×k). 

The process totally computes the GSE values of ⎥⎦
⎥

⎢⎣
⎢

k
n  groups and sorts them. 

Therefore, the expected time of Line 1 is O( ⎥⎦
⎥

⎢⎣
⎢×⎥⎦

⎥
⎢⎣
⎢+⎥⎦

⎥
⎢⎣
⎢××

k
n

k
n

k
nkp log ) = 

O(
k
n

k
nn log×+ ). 
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(2) Line 5: The time complexity of FakeAssign() is equal to that of the Assign() 

function of Phase I. That is, O(n). Since Phase II executes FakeAssign() ⎥⎦
⎥

⎢⎣
⎢

k
n  

times, the running time is O( n
k
n

×⎥⎦
⎥

⎢⎣
⎢ ) = O(

k
n2

).  

(3) Line 6: In the worst case, Phase II executes the Compare_SSE() function O(
k
n
) 

times. Compare_SSE() requires to compute the GSE values of 4k-1 groups with 

size 4k-1. It has to compute n distances at most. Therefore, the running time is 

O(
k
n ×p×(4k)2) = O(kn). 

(4) Line 11: In the worst case, Phase II calls Phase I O(
k
n
) times. Furthermore, the 

size of any oversized group is less than 4k. The running time of Line 11 becomes 

O( 2)4(log k
k

k
k
n
× ) = O(n×logk). 

According to the four cases, with 
k
n2

 >> 
k
n

k
nn log×+  and 

k
n2

 >> n×logk, the time 

complexity of Phase II is O(
k
n2

+kn). 

Q.E.D 
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