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Abstract 

With the rapid increase in the use of databases, the problem of missing values inevitably arises. The 
techniques developed to effectively recover these missing values should be highly precise in order to 
estimate the missing values completely. The mining of association rules can effectively establish the 
relationship among items in databases. Therefore, discovered association rules are usually applied to 
recover the missing values in databases. This study presents a Fast Recycle Combined Association Rules 
(FRCAR) method to fill in the missing values. FRCAR applies a technique to recycle sub-frequent itemsets 
and bit-arrays to discover more association rules than the Missing Value Completion (MVC) approach. 
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The experimental result demonstrates that FRCAR results in a higher recovery rate and higher recovery 
accuracy for missing values. 

Keywords: Association rule; data mining; missing value; relational database 

1. Introduction 

Knowledge management (KM) is one of the most important issues in computer science and is a key to obtaining 
competitive advantages in the modern enterprises. Successful KM requires useful tools to extracting valuable 
information from large databases [1-3]. The techniques developed for data mining or Knowledge Discovery in 
Databases (KDD) attempt to mine hidden and useful information from large databases [4]. Typically, an 
enterprise collects and stores important business information, resulting in a surprising growth of data. Although 
current computer technologies can handle massive amounts of data, the rapid growth of databases causes some 
attribute values to be missed or causes inconsistencies in the data gathering process. Before data analysis begins, 
the data cleaning step deals with errors and inconsistencies from raw data to improve the quality of the following 
discovered information. Therefore, the problem of recovering missing values has become a top priority and has 
played an important role in the data mining field [5-7]. 

One simple method of dealing with missing values is to delete all tuples with missing values. The resulting 
truncated databases often include too little data to analyze effectively. As an alternative, users can apply some 
simple statistical methods such as using mean or median [4, 8] to predict missing values. However, the predicted 
values, which are still inaccurate, become noise and influence the quality of the information. Consequently, to 
effectively deal with missing values, several researches have been proposed [4, 9-15]. 

Agrawal, et al. has proposed an efficient algorithm to discover association rules from large databases for data 
mining [16, 17]. An association rule reveals relationships among items. For example, an item, A, which appears 
in a transaction, implies that another item, B, has a high possibility of appearing in the same transaction. 
Association rules are widely used to find associative patterns among products in an electronic commerce 
environment [7]. Therefore, in dealing with missing values, Ragel and Cremilleux have presented the Robust 
Association Rule (RAR) approach based on the association rules method to partially discard the missing values in 
relational databases [14]. Ragel and Cremilleux have also proposed the Missing Value Completion (MVC) 
approach, which is based on RAR, to resolve value completion issues [15]. MVC also supports recovering a 
single tuple with multiple missing values. However, with regard to the effectiveness of value completion 
techniques [4, 13, 15], including MVC, they emphasize the guessing precision (the number of right guesses/the 
number of guesses) rather than considering the recovery rate (the number of guesses/the number of missing 
values) and recovery precision (the number of right guesses/the number of missing values) of the missing values. 
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Therefore, this study focuses on a method that considers the recovery accuracy and the recovery rate of inferring 
and recovering multiple missing values to effectively improve prediction quality. 

The MVC method applies association rules to fill in missing values and involves a trade-off between accuracy 
and the recovery rate of the missing values. In other words, to achieve higher accuracy, the recovery rate must be 
decreased, and vice versa, because the recovery accuracy of MVC depends on the minimum confidence threshold 
of the mining process. A high threshold value of the mining process results in a lower number of association rules 
being generated. Therefore, in many situations, no association rule can be used to recover the missing values. To 
solve the problem, this study presents a Fast Recycle Combined Association Rules (FRCAR) method to discover 
extra combined association rules from recyclable itemsets. Moreover, FRCAR uses bit-arrays and simple 
Boolean AND/OR operations to efficiently discover association rules. The whole process requires scanning an 
entire relational database only once without establishing a candidate trie structure (a hash tree structure) [17]. 

For the same minimum thresholds, FRCAR generates more association rules to recover the missing values than 
MVC does. Thus, the proposed method can enhance the MVC method to achieve a higher recovery rate and 
higher accuracy.  

The rest of this paper is organized as follows: Section 2 introduces some related researches including the Boolean 
association rules, the RAR, and the MVC methods. Section 3 proposes a novel rules generation method to obtain 
more association rules than MVC does. Section 4 proposes an array-based method to efficiently identify rules by 
bit-wise AND/OR operations. Section 5 provides experiment results and evaluates the performance of FRCAR. 
Finally, conclusions are drawn in Section 6. 

2. Related Work 

2.1. Association rules 

Agrawal, et al. has proposed and defined the mining of association rules [17]. Each item has a binary attribute 
that presents whether an item has appeared in a transaction. These association rules are also called Boolean 
association rules [4]. The formal statement is as follows [16, 17]: Let I = {P1, P2, …, Pn} be a set of n distinct 
literals, called items. Let DB be a transaction database, where each transaction Ti∈I is a set of items. A k-itemset, 
X, is the set of items with length k, containing in a transaction. An association rule, denoted as X⇒Y, has two 
attributes, support and confidence, where X∩Y = φ. The value of the two attributes of each rule must be no less 
than the minimum support (minSup) and the minimum confidence (minConf) values, respectively. The support 
value, s%, of the rule is the percentage of transactions containing X∪Y in the transaction database, denoted as 
Sup(X⇒Y) = |dbX∪Y|/|DB|, where dbX∪Y is the transaction set containing X∪Y; and the confidence value, c%, of 
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the rule is the conditional probability, Pr(Y|X) = Pr(X∪Y)/Pr(X), denoted as Conf(X⇒Y). If the support value of 
an itemset is not less than minSup, the itemset is called the frequent itemset; otherwise, the itemset is an 
infrequent one. After the frequent itemsets are discovered, users can straightforwardly derive the corresponding 
confidence value of each rule. Therefore, discovering all frequent itemsets dominates the performance of the 
mining association rules process.  

The Apriori algorithm, a multiple-pass algorithm, is a typical and famous technique to identify frequent itemsets 
[17]. In the k-th pass, Apriori generates all candidate k-itemsets (the candidate itemsets with length k) and scans 
the database once to determine whether a candidate k-itemset is frequent. In each pass, two arbitrary frequent (k-
1)-itemsets join to form a k-itemset while their first k-2 items are identical. Then, Apriori applies an efficient 
prune strategy, the Apriori property (the downward closure property) [4], to reduce the number of candidates. 
The Apriori property indicates that no superset of an infrequent itemset can be frequent. Therefore, Apriori can 
delete the useless candidates, each containing at least one infrequent itemset, to speed up the performance of the 
mining process. To efficiently discover frequent itemsets, several researchers have proposed certain fast 
algorithms [18-22]. 

2.2. Robust Association Rules (RAR) method  

For a relational database, a tuple usually contains multiple attributes; a quantitative attribute is often partitioned 
into multiple intervals and each interval is treated as an item. Therefore, researchers have presented the mining 
methods of Quantitative Association Rules (QARs), which are based on traditional association rules, to discover 
quantitative association rules in relational database tables [23, 24].  

Let I = {P1, P2, …, Pn} be a set of n distinct items in a relational database. An item includes a pair (ATi, Vi), 
which is its attribute, ATi, with the associated quantitative value Vi. That is Pi = (ATi, Vi). For convenience, an 
item (ATi, Vi) is written as ATi

Vi. For example, the symbol, C2, denotes the item with the attribute C and the 
quantitative value 2. 

In a relational database with some missing values, users must discard the victim tuples (a tuple containing at least 
one missing value) to discover QARs. Deleting tuples with missing values often generates too few useful rules to 
be applied effectively [14]. Ragel and Cremilleux have proposed the Robust Association Rules (RAR) approach 
to reduce the impact of missing values in a database [14]. Instead of deleting each victim tuple, RAR partially 
disables the victim tuples to solve the lost rules issue. The RAR approach cuts a database into several valid 
databases (vDB), which contain no missing values, in order to discover rules. The definitions in RAR are as 
follows [14]:  

Let DB be a relational database, Ti be a tuple in DB, and R be a rule X⇒Y.  
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Definition 2.1 (Disabled data) Consider an itemset X. Ti is disabled in DB if Ti has at least one item containing a 
missing value for X. 

Let Dis(X) denote the tuples of all disabled Ti for X in DB.  

Definition 2.2 (Valid database) Let vDBX be the valid database for X in DB. Then, vDBX = DB - Dis(X). 

RAR redefines the support and confidence values as follows.  

Sup(R) = 
||

||

YX

YX

vDB
db

U

U , and Conf(R) = 
|)(|||

||
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dbYDisdb
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Definition 2.3 (Representative) Let Rep(X) be the representative value of X in DB. The definition of Rep(X) is 

Rep(X) = 
||
||

DB
vDBX . A large representative value of X∪Y, which is not less than the threshold, can avoid rules for 

discovery in a small YXvDB U . The user-specified minimum threshold of the representative value is denoted as 

minRep. 

Example 2.1 Consider the sample relational database in Table 1 with minSup = 60%, minConf = 60%, and 
minRep = 70%. The table has ten tuples and four attributes. The four attributes, A, B, C, and D, separately include 
one, one, two, and three quantitative values. The symbol “?” denotes the missing value of the corresponding item 
in a tuple. In this example, B1⇒C1 is the rule, but A1⇒C1 is not. Because the representative value, Rep(A1⇒C1) = 
6/10 = 60%, is below minRep. The support, confidence, and representative values of the rule B1⇒C1 are as 
follows: 
Sup(B1) = 8/8 = 100%, Sup(C1) = 6/8 = 75%, Sup(B1⇒C1) = 6/7 = 85.7% 
Conf(B1⇒C1) = 6/(8-1) = 85.7%, and Rep(B1⇒C1) = 7/10 = 70%. 
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Table 1. An example of a relational database 
Attribute

TID 
A B C D 

T01 1 1 1 1 

T02 1 1 1 1 

T03 1 ? ? 1 

T04 1 1 1 2 

T05 1 1 1 2 

T06 1 1 1 2 

T07 1 1 ? 3 

T08 1 1 1 3 

T09 ? 1 2 3 

T10 ? ? 2 2 

2.3. Missing Value Completion (MVC) method 

RAR only partially disables the victim tuples to passively discover the association rules. For active discovery, 
Ragel and Cremilleux have also proposed the Missing Values Completion (MVC) approach, which is based on 
the RAR method, to recover multiple missing values in a database [15]. First, MVC applies RAR to discover all 
association rules. Then, MVC applies the most appropriate rule to fill in a single missing value in a tuple. If a 
tuple has multiple missing values, MVC runs the process repeatedly. To avoid the propagating of the wrong 
value, MVC uses the rules, which have a high confidence value (more than 95%), to recover a tuple with multiple 
missing values.  

Example 2.2 Consider the sample database in Table 1 again. The three minimum thresholds, minSup, minConf, 
and minRep, are identical with those in Example 2.1. MVC executes the RAR process to generate the four rules, 
A1⇒B1, B1⇒C1, B1⇒A1, and C1⇒B1, with 100%, 85.7%, 100%, and 85.7% confidence values, respectively. 
Except for tuple T10, MVC recovers each missing value by filling “1” in T03, T07, and T09. 
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3. Combined Association Rules Using Recycle Technique 

Definition 3.1 (Sub-frequent itemset) Give two pre-defined thresholds minSup and minRSup. If the support value 
of an itemset, X, is less than minSup and not less than minRSup, the itemset is called a sub-frequent itemset. That 
is minRSup ≤ Sup(X) < minSup. 

The discovered association rules can be used to recover corresponding missing values. Therefore, increasing the 
discovered rules can increase the recovery rate for missing values in a relational database. To increase the 
identified rules, this study combines at least two sub-frequent itemsets to become a frequent combined itemset. 
The support value of each combinable sub-frequent itemset requires archiving the pre-defined recycle support 
threshold value, minRSup, where minRSup < minSup. The method of recycling some sub-frequent itemsets is 
called the Recycle Combined Association Rules (RCAR) method. The definitions are as follows: 

Definition 3.2 (Combinable attribute) Let a database include m attributes. Consider n sub-frequent k-itemsets {X1, 

X2, …, Xn}, if ||
1

i

n

i

XI
=

= k-1 > 0 and ATj is the only attribute in i

n

i
i

n

i
XX IU

11 ==
− , then the attribute, ATj, is called the 

combinable attribute of these itemsets, where 1 ≤ j ≤ m. 

Definition 3.3 (Combined itemset and combinable itemset) Consider n sub-frequent k-itemsets {X1, X2, …, Xn} 
having a common combinable attribute ATi. The combined itemset CX = {X1∪X2∪…∪Xn} = {P1, P2, …Pi-1, 
Pi+1, …, Pk}∪{ATi

V1, ATi
V2, …, ATi

Vn}. For convenience, CX is denoted as {P1, P2, …, Pi-1, ATi
(V1, V 2, …, Vn), 

Pi+1, …, Pk}. Each sub-frequent k-itemset of CX is called the combinable itemset. For a certain attribute in a sub-
frequent itemset, if a combined itemset involves the maximum distinct number of combinable itemsets, it is 
called the Longest Combined Itemset (LCI). 

Definition 3.4 (Frequent combined itemset) Consider n sub-frequent k-itemsets {X1, X2, …, Xn}, according to 
Definitions 3.2 and 3.3, the support value of CX becomes sup(CX) = sup(X1) + sup(X2) + … + sup(Xn). If 
Sup(CX) ≥ minSup, then CX is called a frequent combined itemset. 

Example 3.1 Consider the relational table in Table 1 with minSup = 60%, minConf = 60%, minRep = 70%, and 
minRSup = 35%. The dataset includes four attributes A, B, C and D. The two sub-frequent itemsets, {A1, D1} and 
{A1, D2}, are combinable. The attribute D is the combinable attribute. Therefore, the longest combined itemset on 
the attribute D is {A1, D(1, 2)}. 

To further recycle these combinable sub-frequent itemsets to become useful association rules, this study defines 
the recycled combined association rules as follows: 
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Definition 3.5 (Recycle combined association rule) An association rule, X⇒Y, is called the Recycle Combined 
Association Rule (RCAR) if X is a frequent combined itemset and Y is a frequent itemset.  

For example, if the frequent combined itemset {A1, D(1, 2)} is generated from Example 3.1, the two rules, A1⇒D(1, 

2) and D(1, 2) ⇒A1, can be derived. The former rule inadequately recovers the missing value at attribute D. 
Therefore, the succedent of a recycle combined association rule does not involve a frequent combined itemset. 
Example 2.2 shows that MVC can recover four missing values in three tuples. Given the same threshold as 
Example 2.2 with minRSup = 35%, RCAR recovers six missing values in four tuples. Table 2 lists the recovery 
result of Table 1 by RCAR. 

 

Table 2. The recovered relational database using RCAR 
Attribute

TID 
A B C D 

T01 1 1 1 1 

T02 1 1 1 1 

T03 1 1 1 1 

T04 1 1 1 2 

T05 1 1 1 2 

T06 1 1 1 2 

T07 1 1 1 3 

T08 1 1 1 3 

T09 1 1 2 3 

T10 1 1 2 2 

4. An Array-Based Algorithm for RCAR 

To speed up the mining process of RCAR, this study establishes the bit-arrays of a relational database table using 
simple Boolean AND/OR operations, called the Fast Recycle Combined Association Rules (FRCAR), on the 
arrays. Given a relational database table, performing the array-based algorithm involves three matrices, the 
Itemset Matrix (IM), the Missing Value Matrix (MVM), and the Recycling Itemset Matrix (RIM). IM and MVM 
are used to calculate the representative and support value of each corresponding itemset. RIM stores the sub-
frequent itemsets, which are prepared to be recycled. The three matrices are described as follows: 
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Itemset Matrix (IM) and Missing Value Matrix (MVM) 

Since each item includes a binary attribute, a relational table can be transformed simply into a bit-array. Table 3 
lists the transformed results, in which the missing values from Table 1 are set to “0”. Similarly, each missing 
value also has a binary attribute as listed in Table 4. Performing a bit-wise “AND” operation between columns of 
IM obtains the support count of the corresponding itemsets by counting the number of “1”s. Similarly, 
performing a bit-wise “OR” operation between columns of the MVM obtains the value, |DB| - |vDB|, of the 
corresponding itemsets. These two values can be applied to easily compute the representative and support values. 
For example, in Table 3, the bit-wise “AND” operation between the two columns A1 and B1 obtains the 
occurrence count of the itemset {A1, B1}, which is seven. Similarly, in Table 4, the bit-wise “OR” operation 
between the two columns A and B obtains the value three. Since the total number of tuples is ten, the 
representative value of {A, B} is (10 - 3)/10 = 70%. The support value of {A1, B1} is (7/10)/70% = 100%. 

Recycling Itemset Matrix (RIM) 

The FRCAR method requires that sub-frequent itemsets be recycled. Therefore, in each pass of the mining 
process, FRCAR creates an itemset matrix, called the recycling itemset matrix (RIM), to store the sub-frequent 
itemset. For example, except for the last two rows, Table 5 lists the RIM of the data in Table 1, with minSup = 
60%, minRSup = 35%, and minRep = 70%. The bit-wise “OR” operation between the two columns {A1, D1} and 
{A1, D2} obtains the combined itemset {A1, D(1, 2)}, which has the frequent support value 75%. 

 

Table 3. The itemset matrix of Table 1 

Attribute A B C D 

Item
TID 

A1 B1 C1 C2 D1 D2 D3 

T01 1 1 1 0 1 0 0 

T02 1 1 1 0 1 0 0 

T03 1 0 0 0 1 0 0 

T04 1 1 1 0 0 1 0 

T05 1 1 1 0 0 1 0 

T06 1 1 1 0 0 1 0 

T07 1 1 0 0 0 0 1 

T08 1 1 1 0 0 0 1 

T09 0 1 0 1 0 0 1 

T10 0 0 0 1 0 1 0 
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Table 4. The missing value matrix of Table 1 

Attribute
TID 

A B C D

T01 0 0 0 0 

T02 0 0 0 0 

T03 0 1 1 0 

T04 0 0 0 0 

T05 0 0 0 0 

T06 0 0 0 0 

T07 0 0 1 0 

T08 0 0 0 0 

T09 1 0 0 0 

T10 1 1 0 0 

 

Table 5. The recycling itemset matrix of Table 1 with minSup = 60%, minRSup = 35% and minRep = 70% 
Itemset X

TID 
A1, D1 A1, D2 

T01 1 0 

T02 1 0 

T03 1 0 

T04 0 1 

T05 0 1 

T06 0 1 

T07 0 0 

T08 0 0 

T09 0 0 

T10 0 0 

Rep(X) 80.0% 80.0% 

Sup(X) 37.5% 37.5% 
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The FRCAR algorithm for discovering all frequent itemsets is as follows: 

Algorithm 1 (Discovering frequent itemsets) 

Input: Relational database DB (including missing values), minRep, minSup, and minRSup 

Output: All frequent itemsets (including frequent combined itemsets) 

Procedure: 
1. k:=1; F1:=φ ; C1:=I; // Fk: the set of frequent k-itemsets 
2. Scan DB to Construct MVM and IM1; // IMk: IM with k-itemsets 
3. foreach Pi∈C1 { 
4.  if Sup(Pi) ≥ minSup && Rep(Pi) ≥ minRep {  
5.   F1:= F1+Pi; } 
6.  else if Sup(Pi) < minRSup×minRep || Rep(Pi) < minRep { 
7.   IM1:=IM1 - Pi_array; } } // Pi_array: the bit array of the item Pi 
8. for (k:=2; |IMk-1|≥ k; k++) {  
9.  Fk:=φ ; CFk:=φ ; RIMk:=φ ;  
10.  (IMk, RIMk):= Array-operation(IMk-1, MVM);  
11.  delete IMk-1; 
12.  foreach Xi_array∈IMk { // Xi_array: the bit array of the itemset Xi 
13.   if Sup(Xi)≥ && Rep(Xi) ≥ minRep { 
14.    Fk:=Fk+Xi; } } 
15.  CFk:= Combine(RIMk); } } //CFk: the set of frequent combined 
k-itemsets 

16. return F:=U
k

Fk+U
k

CFk; 

 

The first pass of the process, which scans the database only once, is described in Lines 1-7. In Lines 6 and 7, 
FRCAR eliminates the bit array of Pi from IM1 when Sup(Pi)<minRSup×minRep. The reason is that a superset of 
the item Pi may be frequent or sub-frequent when Sup(Pi)≥minRSup×minRep. In Line 10, the process creates the 
two matrices, IM and RIM, and recycles the sub-frequent itemsets. The frequent combined itemsets generated are 
in Line 14. The two sub-procedures, Array-operation() and Combine(), are as follows: 
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Sub-procedure Array-operation (IMk-1, MVM) 
1. IMk:=φ ; RIMk:=φ ; 
2. foreach Xi_array∈IMk-1 {  
3.  foreach Xj_array∈IMk-1 { // j>i 
4.   if true==Apiroi-join(Xi, Xj) {  
5.    Xi’_array:= Xi_array∧Xj_array; 
6.    Rep(Xi’):= Representative(MVM, Xi, Xj); 
7.    Count Sup(Xi’); 
8.    if Sup(Xi’)≥minRSup×minRep && Rep(Xi’)≥minRep { 
9.     IMk:= IMk + Xi’_array; } 
10.    if Sup(Xi’)≥minRSup && Sup(Xi’)<minSup && Rep(Xi’)≥minRep { 
11.     RIMk:= RIMk + Xi’_array; } } 
12.   else { break; } } } 
13. Return IMk and RIMk; 
 

In Line 4, the sub-procedure Apriori-join() determines whether two itemsets can be joined. In Line 6, the sub-
procedure Representative() calculates the representative value of the corresponding itemset. In Lines 10 and 11, 
FRCAR recycles the sub-frequent itemsets. 

 

Sub-procedure Combine (RIMk) 

Procedure: 
1. CFk:=φ ; 
2. foreach Xi_array∈RIMk { 
3.  foreach attribute∈Xi { 
4.   discover LCI; // LCI: the set of Longest Combined Itemsets 
5.   if Sup(LCIi)≥minSup && Rep(LCIi)≥minRep { 
6.    CFk:=CFk+LCIi; }  
7.  foreach Xi∈LCI { 
8.   remove Xi_array from RIMk; } } 
9. Return CFk; 

 

Since all frequent itemsets can be used to straightforwardly generate the corresponding recycled combined 
association rules, this study omits the algorithm of the rule generation. 
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5. Experimental Results 

The performance of FRCAR was compared with that of MVC using an AMD Barton ES 2900+ (2000MHz) PC 
with 1 GB of main memory, running Windows XP Professional. All algorithms were coded in Visual C++ 6.0, 
and applied to two real datasets, Breast-cancer and Tic-tac-toe, which were taken from the UCI Machine 
Learning Repository [25]. Table 6 lists a summary of the two datasets and the used thresholds in this experiment. 
Each attribute of Breast-cancer and Tic-tac-toe randomly introduces 25 and 50 missing values, respectively.  

 

Table 6. Characteristics of the two experimental datasets and the used threshold values 
Dataset Tuple number Attribute number Generated number 

of missing values 
minRSup minRep 

Breast-cancer 277 10 250 5% 70% 

Tic-tac-toe 958 10 500 4% 75% 

 

Figure 1 shows the comparison of the number of rules generated by MVC and FRCAR over various sets of 
minSup and minConf thresholds. In the figure, FRCAR generated more rules than MVC, particularly in a low 
minSup value scenario. The reason was that FRCAR generated not only association rules, but combined 
association rules. By using these generated rules, Figure 2 demonstrates the power of FRCAR to recover the 
missing values. For example, MVC had no rule resulting in the zero recovery rate in the scenario minSup = 75% 
and minConf = 75%, while FRCAR generated 66 rules and had a recovery rate of 26.4% as shown in Figures 1(a) 
and 2(a). FRCAR generated more rules than MVC did. Therefore, FRCAR had the higher recovery rate than that 
of MVC as shown in Figure 2. Figure 3 shows that FRCAR also demonstrated a better recovery precision than 
MVC. In other words, the number of right guesses of FRCAR was greater than that of MVC. 

Tables 7 and 8 compare the hit rates (the total right guessing number/total guessing number) for MVC and 
FRCAR. In the middle four columns of Table 7, although FRCAR had a lower hit rate than MVC, the four right 
guessing numbers of FRCAR were higher than those of MVC. In Table 8, FRCAR had a higher hit rate than 
MVC except in the scenario, [14%, 68%]. 

This experiment also compared the running time of the two algorithms for generating frequent itemsets and 
frequent combined itemsets. Figures 4(a) and 4(b) present the running time curves of the two algorithms on 
Breast-cancer and Tic-tac-toe, respectively. FRCAR generated more candidate itemsets than MVC. Therefore, 
FRCAR had a higher running time. Although FRCAR had a longer running time, it ran quickly on the two 
datasets. For example, as shown in Figure 4, FRCAR only spent less than 0.08 seconds and 0.4 seconds on 
Breast-cancer and Tic-tac-toe, respectively. 
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Figure 1. The comparison of the association rules number for MVC and FRCAR on (a) Breast-cancer and (b) 
Tic-tac-toe 
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Figure 2. The comparison of recovery rates for MVC and FRCAR on (a) Breast-cancer and (b) Tic-tac-toe 
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Figure 3. The comparison of recovery precision for MVC and FRCAR on (a) Breast-cancer and (b) Tic-tac-toe 

 

Table 7. The hit rate comparison for MVC and FRCAR on Breast-cancer 

[minSup, minConf] [30%, 50%] [40%, 55%] [50%, 60%] [60%, 65%] [70%, 70%] [75%, 75%] 

MVC 
Hit rate 57.7% 64.9% 70.7% 70.7% 82.5% 0.0% 

Hit number 82 63 53 53 33 0 

FRCAR 
Hit rate 58.8% 63.1% 66.3% 70.0% 72.6% 72.7% 

Hit number 90 70 67 63 53 48 

 

Table 8. The hit rate comparison for MVC and FRCAR on Tic-tac-toe 

[minSup, minConf] [8%, 62%] [10%, 64%] [12%, 66%] [14%, 68%] [16%, 70%] 

MVC 
Hit rate 44.8% 51.8% 64.2% 85.7% 85.7% 

Hit number 169 72 43 24 24 

FRCAR 
Hit rate 46.0% 55.8% 68.2% 83.9% 86.1% 

Hit number 184 87 60 52 31 

 



16 

 

Breast-cancer

0.00

0.02

0.04

0.06

0.08

0.10

[30%, 50%] [40%, 55%] [50%, 60%] [60%, 65%] [70%, 70%] [75%, 75%]

Threshold [minSup, minConf]

R
un

ni
ng

 ti
m

e 
(s

ec
.)

MVC
FRCAR

Tic-tac-toe

0.0

0.1

0.2

0.3

0.4

0.5

[8%, 62%] [10%, 64%] [12%, 66%] [14%, 68%] [16%, 70%]

Threshold [minSup, minConf]

R
un

ni
ng

 ti
m

e 
(s

ec
.)

MVC

FRCAR

(a) (b) 

Figure 4. The comparison of running times for MVC and FRCAR on (a) Breast-cancer and (b) Tic-tac-toe 

 

6. Conclusions 

Data preparation is an essential phase of data mining, and the recovery of missing values is an important issue in 
data preparation. The association rules have the advantage of effectively pointing out the relationship between 
items in databases. Therefore, this study presents a Fast Recycle Combined Association Rules (FRCAR) method 
to recover missing values in data. FRCAR allows increasing the recovery rate and recovery precision of the 
missing values. In comparing FRCAR with the MVC method, this study found that by applying a technique to 
recycle sub-frequent itemsets, FRCAR discovers more association rules than MVC. Moreover, FRCAR uses bit-
wise operations on three created bit-arrays to efficiently discover frequent combined itemsets. In the same 
threshold values scenario, the experimental results show that FRCAR has a better recovery rate and higher 
recovery accuracy for recovering missing values than MVC. 
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