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Abstract 

Data mining mechanisms have widely been applied in various businesses and manufacturing 

companies across many industry sectors. Sharing data or sharing mined rules has become a trend among 

business partnerships, as it is perceived to be a mutually benefit way of increasing productivity for all 

parties involved. Nevertheless, this has also increased the risk of unexpected information leaks when 

releasing data. To conceal restrictive itemsets (patterns) contained in the source database, a sanitization 

process transforms the source database into a released database that the counterpart cannot extract 

sensitive rules from. The transformed result also conceals non-restrictive information as an unwanted 

event, called a side effect or the “misses cost.” The problem of finding an optimal sanitization method, 

which conceals all restrictive itemsets but minimizes the misses cost, is NP-hard. To address this 

challenging problem, this study proposes the Maximum Item Conflict First (MICF) algorithm. 

Experimental results demonstrate that the proposed method is effective, has a low sanitization rate, and 

can generally achieve a significantly lower misses cost than those achieved by the MinFIA, MaxFIA, 

IGA and Algo2b methods in several real and artificial datasets. 
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1. Introduction  

Data mining is an interdisciplinary field bringing together techniques to extract 

information from large databases [1]. Over the past few years, data mining mechanisms have 

widely been applied in various business organizations (for example, retail, insurance, finance, 

banking, and communication) and manufacturing companies such as Texas Instruments (fault 

diagnosis), Ford (harshness, noise, and vibration analysis), Motorola (CDMA Base Station 

Placement), Boeing (Post-flight Diagnostics), and Kodak (data visualization) [2]. 

Large companies use powerful data acquisition systems (such as minicomputers, 

microprocessors, and senor networks) to collect, analyze, and transfer data. The role of 

knowledge discovery in databases (KDD) and data mining methodologies, therefore, 

has become extremely important for extracting useful knowledge from huge amounts 

of raw data. [2, 3] 

For design procedure capture, which is a specific engineering knowledge that can 

be captured from the design events monitored during design process [4], data mining 

techniques can be used in different stages of production. Manufacturing is typically a 

controlled process such as wafer fabrication. Using mining tools to analyze the 

collected data can result in efficient strategies to improve the production process, find 

out the unusual steps during the manufacturing process [5], and improve the reliability 

of system identification [6].  

Data mining is an evolutionary step along the path of problem solving through 

data analysis [1]. Releasing collected data or mined rules for sharing has become a 

crucial trend among business partnerships as it results in increased productivity for all 

companies involved. Nevertheless, the released data have also increased the risk of 

incurring sensitive information leaks [7]. Organizations should evaluate and decrease 
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the risk of disclosing information. Therefore, developing efficient approaches to 

maintaining an organization’s competitive edge in business by restricting information 

leakages has become an important issue. Consider the following two scenarios: 

Scenario one: Some paper manufacturers have their own databases that record their 

patterns of stock and sale. For their mutual benefit, multiple companies decide to share 

their databases to cooperatively generate information and trends found in the shared 

large database. However, each company prefers to keep their own strategic patterns 

confidential from the others. Thus, a company can both uncover more interesting trends 

from the combined shared database than that available only from their own database, 

and can prevent sensitive information from being discovered by other companies [8].  

Scenario two: The captured design procedure knowledge helps companies to 

understand how experienced designers carry out their designs and guide other designers 

to design better. Moreover, the knowledge can be used for training novice designers so 

that they can quickly learn how to execute prominent designs [4]. In order to preserve 

strategic or sensitive intelligence and still share such knowledge among allied 

companies, a data sanitization process or privacy-preserving techniques must be 

applied. 

An intelligent system can be developed to achieve this. Moreover, the 

privacy-preserving data mining will be one of the key techniques in such a system. The 

mechanisms usually transform the source database into a new one from which sensitive 

information cannot be extracted. The procedure of transforming the source database 

into a new database that hides some sensitive rules is called the sanitization process [9].  

In the association rule mining, all rules are derived from the frequent itemsets 

(patterns). Accordingly, one essential and efficient way to protect some restrictive 

patterns is to decrease their support values, which can be done by deleting or modifying 

items in several transactions. Such approaches usually follow two restrictions: (1) 
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reduce the impact on the source database; and (2) find an appropriate balance between 

privacy and knowledge discovery. An itemset which must be concealed is called a 

restrictive itemset. The impact on a source database of deleting items from transactions 

can be measured by the sanitization rate. The sanitization rate is defined as the ratio of 

deleted items to the total support values of restrictive itemsets in the source dataset. The 

sanitization process can also conceal some non-restrictive itemsets, which is a side 

effect called the “misses cost.” An optimal sanitization process, which both conceals all 

restrictive patterns and minimize the misses cost, is an NP-hard problem [7]. 

The Item Grouping Algorithm (IGA) has been proposed to enforce privacy in 

mining frequent itemsets [10]. IGA groups restrictive itemsets and assigns a victim 

item to each group. This approach can reduce the impact on the database if the sanitized 

transaction contains more than one restrictive itemset.  

IGA has a low misses cost, but can be improved further by reducing the number of 

deleted items. Moreover, it must deal with the overlap between groups. To deal with 

this problem, this study proposes a novel algorithm called Maximum Item Conflict 

First (MICF). The degree of conflict of an item in a sensitive transaction is defined as 

the number of restrictive patterns affected when an item is deleted. MICF selects an 

item with the maximum degree of conflict for deletion. Therefore, MICF 

simultaneously decreases the support values for the maximum number of restrictive 

patterns and reduces the number of items to be removed from the source database. 

This study focuses on the task of deleting items from transactions to conceal 

frequent itemsets in association rule mining and on the issue of no hiding failure. All 

association rules derivable from these hidden frequent itemsets are thus also hidden. 

That is, no extra artificial itemset can be generated from the sanitized dataset.  

The rest of this paper is organized as follows. Section 2 presents an overview of 

the current methods for solving the problem of privacy-preserving association rule 
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mining. Section 3 explains the proposed Maximum Item Conflict First (MICF) 

algorithm for hiding all restrictive itemsets. The time complexity analysis is 

represented in Section 4. Section 5 provides experimental results and evaluates the 

performance of the proposed algorithm. Finally, we conclude in Section 6 with a 

summary of our work. 
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2. Background and Related Work 

2.1. Mining association rules 

The problem of mining association rules have been first presented in 1993 [11]. 

Recently, mining association rules plays one of the most important roles in data mining. 

Given a transaction database, mining association rules attempts to discover the 

significant relationship among items. The formal definition is as follows.  

Let DB denote a transaction database, which is a set of transactions. DB = {T1, 

T2, ..., Tz}. Let I = {i1, i2, …, in} be all set of items in DB. Thus, ∀ Tq∈DB, Tq⊆ I, 

1 ≤ q ≤ z. Let X be a set of items, called an itemset, where X⊆ I. A transaction Tq includes 

an itemset called X that Tq supports. The notation X⇒Y presents an association rule, 

where X⊆ I, Y⊆ I and XIY = φ . The rule X⇒ Y has two attributes support and 

confidence, respectively, denoted as Sup(X⇒Y) and Conf(X⇒Y). Let DBX present the 

set of transactions in which each transaction includes X. The mathematic definition is as 

follows. Sup(X⇒Y) = |DBX U Y|/|DB|, and Conf(X⇒Y) = Sup(X⇒Y)/Sup(X). Users 

pre-define the minimum support (minSup) and the minimum confidence (minConf) 

thresholds. The two attributes of each association rule are above the two minimum 

thresholds, respectively. An itemset X is called a frequent itemset if Sup(X) ≥ minSup. 

All association rules can directly be derived from the set of frequent itemsets [11, 12].  

Recently, various algorithms have been proposed to efficiently discover the 

frequent itemsets, including level-wise algorithms [13, 14] and pattern-growth methods 

[15, 16]. Apriori is the most famous one, which is a level-wise algorithm containing 

multiple passes. In each pass, Apriori generates a candidate set of frequent k-itemsets 

(frequent itemsets with length k), which are combined from two arbitrary frequent (k – 

1)-itemsets, and scan the entire transaction database to determine the frequent itemsets. 
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Then, Apriori generates candidate (k + 1)-itemsets for the next pass.  

2.2. Privacy-Preserving in Mining Frequent Itemsets 

The advances in data mining have been proven beneficial for business, but also 

have introduced new problems in the preservation of privacy [17]. The effort of 

preserving privacy can be grouped into two major classes: classification rules 

privacy-preserving [18-20] and association rules privacy-preserving [7, 10, 21, 22]. The 

former class has been widely investigated. In general, those methods attempt to prevent 

disclosure of sensitive data so that using non-sensitive data to infer sensitive data 

becomes more difficult [17]. However, they do not prevent the discovery of the 

inference rules themselves. Accordingly, researchers have paid attention to the later 

class in recent years. A sensitive association rule that should be hidden is called a 

restrictive rule. Restrictive rules always can be generated from frequent itemsets. 

Therefore, hiding a restrictive itemset implies hiding all the rules which contain the 

itemset. Such a frequent itemset is called the restrictive itemset.  

Let DB represent a source database, RI represent the set of restrictive itemsets and 

~RI represent the set of non-restrictive itemsets. The problem of data sanitization is to 

transform DB into a sanitized database DB’, called the released database, so that the 

most itemsets in ~RI can still be discovered from DB’ while all itemsets in RI cannot. 

The process also usually unexpectedly hides non-restrictive itemsets. It is called the 

side effect or the misses cost of the process. The formula of the misses cost is as follows 

[10]. 

Misses cost = 
|)(|~

|)'(|~|)(|~
DBRI

DBRIDBRI − , where |~RI(DB)| and |~RI(DB’)| are the 

numbers of non-restrictive itemsets mined from DB and DB’, respectively. 



 

7 

Atallah et al. first proposed a heuristic algorithm (Sanit.) to reduce the support 

values of restrictive itemsets. They also have proved that the optimal sanitization 

process is an NP-hard problem [7]. The “Sanit.” algorithm creates a frequent itemset 

graph and sorts restrictive itemsets in decreasing order of their support values. Then, for 

a restrictive itemset, Sanit. selects an itemset with the maximum support value in each 

level of the itemset graph until at the top level, the victim item is selected. Sanit. also 

selects a sensitive transaction to delete the victim item while the sanitization affects a 

minimum number of the frequent 2-itemsets.  

2.3. Other Sanitization Algorithms 

Dasseni et al. proposed two schemes of sanitizing a database [23]. One uses the 

decreasing confidence values of the sensitive rules; the other use the decreasing support 

values of the rules. The authors have also implemented three algorithms Algo1a, 

Algo1b and Algo2a, respectively.  

Saygin et al. described another concept to prevent the discovery of sensitive rules, 

which applies unknown values to replace original values [24, 25]. That method can 

obscure the set of sensitive rules. The authors have yet to formally prove the safety of 

that method. 

Oliverira and Zaïane introduced the Item Grouping Algorithm (IGA) to enforce 

privacy in mining frequent itemsets [10]. IGA groups restrictive itemsets in identical 

groups with which itemsets share the same sub-itemset. Clustering the restrictive 

itemsets leads to the overlap between groups. Therefore, IGA assigns a victim item to 

each group and sorts groups according to the itemset number of groups. If the groups 

overlap, IGA maintains each distinct itemset only once in the group in which the 

itemset first appeared. If the sanitized transaction contains more than one restrictive 

itemset, deleting a victim item from the transaction could lead to reduction of the 
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support values of a set of restrictive itemsets at the same time. This operation can lower 

the impact on the database and reduce accidental hiding of non-restrictive itemsets. 

IGA has low misses cost in the scenario of no restrictive itemsets can be disclosed but 

no efficient method to optimally cluster the restrictive itemsets based on the 

intersections between itemsets. 

Recently, Verykios et al. extended the two schemes of the study [22]. The authors 

also introduce two further algorithms Algo2b and Algo2c. Among the support 

decreasing algorithms, Algo2b lost the least rules. Several researchers are also actively 

working in the fields of data sanitization [21, 24] and rule sanitization [26]. 
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3. Maximum Item Conflict First (MICF) Method 

Given the restrictive itemsets, frequent itemsets, and source database, the goal of 

the sanitization process is to protect restrictive frequent itemsets against the mining 

techniques used to discover them. The sanitization process, which decreases the 

support values of restrictive itemsets by removing items from sensitive transactions 

essentially, includes four sub-problems:  

(1) identifying the set of sensitive transactions for each restrictive itemset;  

(2) selecting the partial sensitive transactions to sanitize;  

(3) for each selected transaction, identifying an item from it to be deleted (called the 

victim item); and  

(4) rewriting the modified database to disk.  

Employing distinct algorithms for the first or the fourth sub-problem does not 

affect the released database. Accordingly, users can apply an algorithm that deals with 

these two sub-problems as fast as possible. To solve the second sub-problem, most 

algorithms sort the sensitive transactions by transaction size or by the degree of conflict 

of the transactions. Selecting a victim item in each sensitive transaction significantly 

affects the side effect. Consequently, this study also uses the simple sorting method on 

the second sub-problem. For the third sub-problem, this study proposes the Maximum 

Item Conflict First (MICF) method to choose an appropriate victim item for each 

designated sensitive transaction.   

Definition 3.1. If a concealed restrictive itemset cannot be extracted from the released 

database with an arbitrary minSup, the concealed itemset has no hiding failure 

occurrence. 

Reducing the support value of an itemset implies that the itemset is hidden in a 
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high minSup scenario. The database owner can set an appropriate privacy threshold (ψ) 

to hide the restrictive itemsets. The privacy threshold is the percentage of the support 

count to that of the restrictive itemset in DB. The hiding failure occurs when some 

restrictive itemsets can be extracted from a released database. A sanitization process 

with a low ψ cannot avoid the hiding failure except for ψ = 0%. That is, to achieve a no 

hiding failure situation, no restrictive itemsets can appear in the released database.   

3.1. Sensitive Transactions Retrieval 

Definition 3.2. Let DB, a source transaction database, be a set of all transactions. DBX 

denotes a set of transactions each transaction containing itemset X in DB. In addition, 

each k-itemset X⊆ I has an associated set of transactions DBX⊆ DB, where X⊆ Tq and 

Tq∈DBX.  

For example, in Table 1, DB{A, C} = {T01, T02, T08}. 

Theorem 3.1. A sanitization process concealing restrictive itemsets by deleting items 

from the source database does not generate any artificial itemset. 

Proof. Let DB be the source database and DB’ be the released database. Since DB’ is 

generated by removing items from DB, clearly, there is an onto mapping f from DB to 

DB’, so that f(Tq) = Tq’, where  Tq∈DB, Tq’∈DB’ and Tq’⊆Tq. 

Let minSup be the pre-defined minimum support threshold. Consider an arbitrary 

itemset X, which X ⊆ Tq’ = f(Tq) ⊆ Tq, for all Tq’∈DB’X. That is, |DBX| ≥ |DB X’|. Let 

d = |DB X| – |DB X’| ≥ 0. Assume that there is an itemset X which is frequent in DBX’, 

but infrequent in DBX. We get  

Sup(X) in DB’ = 
|'|
|'|

DB
DBX  ≥ minSup > 

||
||

DB
DBX  = Sup(X) in DB. (1) 

Since |DB’| ≥ |DBX’| ≥ 0,  

|'|
|'|

DB
DBX  ≤ 

dDB
dDBX

+
+

|'|
|'|  = 

dDB
DBX

+|'|
|| . (2) 
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Comparing Eqs. (1) and (2), we obtain 
dDB

DBX

+||
||  > 

||
||

DB
DBX . Therefore, |DB| + d < |DB|. 

It is a contraction. Therefore, a sanitization process concealing restrictive itemsets by 

deleting items from the source database does not generate any artificial itemset.  

Q.E.D. 

Definition 3.3. Let RI be the set of all restrictive itemsets in DB, and db be the set of all 

transactions containing at least one restrictive itemset. That is, 

}, |{ qq TXRIXDBTdb ⊆∈∃∈= . A transaction Tq in db is called a sensitive 

transaction. Moreover, dbX denotes a set of all sensitive transactions that contain 

restrictive itemset X in db. This is, }|{ XTdbTdb qqX ⊇∈= .  

For example, Table 2 lists the set of all restrictive itemsets sorted by their support 

count, and db = {T01, T04, T05, T06, T08} as shown in Table 3. Each transaction of db 

contains at least one restrictive itemset. 

Definition 3.4. The degree of conflict of a sensitive transaction Tq is the number of 

restrictive itemsets which are included in Tq, denoted as Tdegree(Tq). If Tdegree(Tq) > 1, 

the transaction Tq is called a conflicting transaction.  

Table 3 lists the conflict degree of each sensitive transaction. For example, 

Tdegree(T01) = 3 because the transaction T01 is a superset of three restrictive itemsets, 

{A, B}, {C, D} and {B, D}.  
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Table 1. Example of a transaction database 

TID Transaction 

T01 {A, B, C, D} 

T02 {A, C, E, F, G} 

T03 {A, E, G, I, J} 

T04 {B, C, D, E} 

T05 {B, D, F, H} 

T06 {A, B, D, F, H} 

T07 {B, C, F, H, J} 

T08 {A, B, C, D} 

 

Table 2. The sorted set of all restrictive itemsets 

RID(rj) Restrictive itemset Support count 

r1 {D, F} 2 

r2 {A, B} 3 

r3 {C, D} 3 

r4 {B, D} 5 

 

Table 3. The set of all sensitive transactions 

TID Transaction Tdegree(Tq) 

T01 {A, B, C, D} 3 

T04 {B, C, D, E} 2 

T05 {B, D, F, H} 2 

T06 {A, B, D, F, H} 3 

T08 {A, B, C, D} 3 

 

The proposed sanitization algorithm, Maximum Item Conflict First (MICF), 

initially scans the database to load all sensitive transactions db in the main memory. 

Therefore, the sanitization process sanitizes transactions in the main memory instead of 
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on the disk. For each restrictive itemset X, MICF extracts dbX from db and sorts 

transactions in increasing order of Tdegree(Tq). MICF employs an index lookup table to 

efficiently sort transactions of dbX and to reduce the memory space requirement. Each 

transaction of dbX is associated with a pair of two values in the lookup table: the first is 

the index value pointing to the transaction and the second is the value of Tdegree(Tq).   

3.2. Sanitization Algorithm 

Definition 3.5. Let rj be the j-th restrictive itemset in RI, where 1≤ j ≤ |RI|. If the 

sanitization process is handling rj, the remaining set of restrictive itemsets is denoted as 

RI’. That is, RI’ = {rj+1, rj+2, …, r|RI|}. 

Definition 3.6. For the restrictive itemset rj, the degree of conflict of an item ip in a 

sensitive transaction Tq is the number of restrictive itemsets in RI’, in which each 

restrictive itemset contains ip and is included in Tq, denoted as Idegree(ip, rj, Tq), where 

ip∈  rj ⊆Tq.  

For example, in Table 1 and Table 2, for the first restrictive itemset r1 = {D, F}, 

Idegree({D}, r1, T06) = 1 and Idegree({F}, r1, T06) = 0. Deleting the item {F} from T06, 

does not decrease the support value of any other restrictive itemset. However, removing 

the item {D} from T06, also reduces the occurrence count of the fourth restrictive 

itemset, {B, D}, by one. 

 The value of item conflict degree in a transaction indicates the number of 

restrictive itemsets whose support value is decreased simultaneously if the item is 

removed from the transaction. For each sensitive transaction, removing the distinct 

victim item leads to a different set of frequent itemsets being recovered from the 

released database with the same minimum support threshold. Therefore, the third 

sub-problem of the sanitization process usually plays the most important role in the 

sanitization algorithm. To reduce the number of deleted items from the source database, 
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MICF selects a victim item which has the maximum degree of conflict among items in 

a sensitive transaction. Deleting the victim item from a sensitive transaction 

simultaneously influences a larger number of restrictive itemsets to reduce their support 

value than other itemsets in the transaction. The reason is that each restrictive itemset 

affected contains the victim item and is a subset of the sensitive transaction. If more 

than one item has the maximum degree of conflict, MICF selects the item with the 

lowest support value as the victim item.  

The pseudo-code of the MICF algorithm is as follows. 

Algorithm MICF 

Input: (1) DB: a source transaction database, (2) ψ: a privacy threshold, and (3) RI: the 
set of all restrictive itemsets 
Output: DB’: released transaction database 
Procedure:  
// Victim: store the victim item 
// MaxIdegree: store the maximum value of the conflict degree among items in a transaction 
1. sort(RI); // sort rj in increasing order of Sup(rj) 

2. Extract db from DB into main memory; // first scanning DB and 

calculate each Tdegree(Tq) 

3. foreach rj in RI  

4.  RI := RI - rj 

5.  Extract dbrj from db; 

6.  sort(dbrj); // sort dbrj in increasing order of Tdegree(Tq)  

7.  N_repeat := 
⎥
⎥

⎤
⎢
⎢

⎡ × )-(1|| ψ
jrdb ;  

8.  for k:=1 to N_repeat  

9.   Tq := k-th transaction in dbrj;  

10.   MaxIdegree := -1;  

11.   foreach ip∈rj  // rj ⊆Tq 

12.    calculate Idegree(ip, rj, Tq); 

13.    if (Idegree(ip, rj, Tq)>MaxIdegree)  

14.     MaxIDegree := Idegree(ip, rj, Tq); 

15.     Victim := ip; 

16.    elseif (Idegree(ip, rj, Tq)==MaxIdegree) 

17.     if support(Victim)>support(ip) 
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18.      Victim := ip; 

19.   delete Victim from Tq; 

20. foreach Tq∈DB // second scanning DB 
21.  if Tq is modified as Tq’ in db 

22.   write Tq’ to DB’; 

23.  else 

24.   write Tq to DB’; 

25. return DB’;  

 

Selecting a restrictive itemset with the lowest support value to sanitize can reduce 

the number of deleted itemsets in the source database. Therefore, In Line 1, MICF sorts 

restrictive itemsets in increasing order of their support values. For a certain restrictive 

itemset to reduce the misses cost, MICF also sorts the sensitive transactions in 

increasing order of their degrees of conflict as shown in Line 6.  

In Line 7, the process deletes 
⎥
⎥

⎤
⎢
⎢

⎡ × )-(1|| ψ
jrdb  items from sensitive transactions for 

each restrictive itemset, where |dbrj| is the occurrence count of rj in db. If an arbitrary later 

restrictive itemset rj’ intersects with rj and a restrictive transaction containing both the itemsets, 

by removing an intersected item from the transaction, the two support counts of rj and rj’ 

simultaneously will be decreased by one. In later pass for rj’, in Line 5, the process extracts 

dbrj’ from db, the transaction number of dbrj’ must be less than the support count of rj’ in DB. 

Consequently, the number of items removed from the source database can be reduced. 

In Lines 8 to 19, MICF sanitizes sensitive transactions repeatedly until satisfying 

the requirement of the privacy threshold. However, users can still recover the hidden 

restrictive itemsets from the released database by using an Apriori-like tool with a low 

minSup. To guarantee no hiding failure occurrence, the privacy threshold must be set to 

0%.  

Example 3.1. Consider the sample transaction database as listed in Table 1, ψ = 0%, 

and four restrictive itemsets listed in Table 2 by increasing order of their support counts. 
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First, MICF loads db into main memory and calculates the conflict degree of each 

transaction as listed in Table 3. For the first restrictive itemset {D, F}, MICF creates the 

index lookup table of db{D, F} from db and sorts the table in increasing order of the 

degree of transaction conflict as listed in Table 4. The occurrence count of {D, F} is 

two; it must be reduced to zero to hide the itemset without hiding failure. Then, for the 

first restrictive itemset r1, select the sensitive transaction to sanitize in sequence. The 

maximum value of item conflict degree is max(Idegree({ip}, r1, T05)) = Idegree({D}, 

{D, F}, T05) = 1. Therefore, MICF deletes {D} from T05 and selects the next 

transaction T06 for sanitization until the support value achieves 0%. 

Table 4. The sorted index lookup table of db{D, F} 

TID Tdegree(Tq)

T05 2 

T06 3 

3.3. Handling very Large Databases 

MICF is a memory-based algorithm. For a very large database, when the size of 

the set of sensitive transactions, db, exceeds the current available memory space, MICF 

will suffer from a large amount of page swaps between disk and main memory. 

Nonetheless, an algorithm, called MICF’, which combines a partition approach with 

MICF can be applied to handle such cases. 

Definition 3.7. Let RI be the set of all restrictive itemsets in DB. Let DBj be the j-th 

partition of DB, where 1 ≤ j ≤ m, ∑
=

m

j

jDB
1

||  = |DB| and U
m

j

jDB
1=

 = DB. The set of all 

sensitive transaction in DBj is denoted as dbj. That is, 

}, |{ q
j

q
j TXRIXDBTdb ⊆∈∃∈= .  

Instead of loading db once, MICF’ loads dbj into the main memory several times. 
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Let MEM be the size of the current available memory space, Sj be the size of dbj and Sj’ 

= Sj + Δj, where 1 ≤ j ≤ m and Δj is the max memory requirement to store the index 

lookup table for an arbitrary restrictive itemset in RI. The upper bound of Δj is 

max{|dbj|×2×sizeof(int) | 1 ≤ j ≤ m}, where sizeof(int) is the size in bytes of an integer 

variable. If max{Sj’ | 1 ≤ j ≤ m } < MEM, MICF’ can sanitize a very large database in 

the main memory based on the partition technique.  

During the sanitization process, MICF’ loads all sensitive transactions of the 

current partition into the main memory each time. Then, MICF’ employs the maximum 

conflict first strategy to sanitize. It removes the restrictive itemsets if their support 

values are decreased to the privacy threshold. After sanitizing a partition, MICF’ loads 

all sensitive transactions of the next partition and deals with the remaining restrictive 

itemsets. 

Fig. 1 is a sketch for MICF’. In this example, MICF’ loads all sensitive 

transactions from the second partition DB2 into the main memory as shown in the slash 

area in Fig. 1. Then, for each rj in RI, MICF’ creates an index lookup table of db2
rj and 

removes victim items from db2, in which each transaction is indexed by the lookup 

table of db2
rj, until rj becomes non-restrictive or no sensitive transaction appears in db2. 

After db2
rj has been sanitized, MICF’ loads DB3 into the main memory. The process is 

repeated until RI becomes an empty set. Without the redundancy, this study omits the 

detailed algorithm of MICF’. 
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Fig. 1. MICF’ performs on a very large database 
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4. Time Complexity Analysis  

4.1. Sanitization Rate 

Definition 4.1. If removing an item from a transaction results in a reduction by one of 

the support count of some restrictive itemsets, where the current support count of each 

restrictive itemset rj is greater than 
⎥⎦
⎥

⎢⎣
⎢ ×ψ||

jrdb , this removal is called a valid 

item-sanitization; otherwise it is called an invalid item-sanitization. Clearly, the support 

count of rj reduces one after the removal. 

Theorem 4.1. Let a sanitization process have no invalid item-sanitization. Let rj be an 

arbitrary restrictive itemset in RI, where 1 ≤  j ≤  |RI|. Let privacy threshold be ψ. The 

upper bound and the lower bound of the valid item-sanitization number of the 

sanitization process for concealing all restrictive itemsets are ⎡ ⎤∑
=

−×
||

1
)1(||

RI

j
r j

db ψ  and 

⎥
⎥

⎤
⎢
⎢

⎡ −×
∈

)1(||max ψ
jrdb

RIrj

, respectively.  

Proof. According to Definition 4.1, a valid item-sanitization can reduce the support 

count of at least one restrictive itemset by one. The value |dbrj| is equal to the support 

count of rj in the source database. 

(1) Upper bound: In the worst case, each valid item-sanitization decreases the support 

of only one restrictive itemset by one. For concealing an arbitrary restrictive itemset, it 

is necessary to decrease its support count by removing ⎥
⎥

⎤
⎢
⎢

⎡
−× )1(|| ψ

jrdb  items from the 

transactions. Therefore, the whole sanitization process requires at most 

⎡ ⎤∑
=

−×
||

1
)1(||

RI

j
r j

db ψ  valid item-sanitizations. After ⎡ ⎤∑
=

−×
||

1
)1(||

RI

j
r j

db ψ  valid 

item-sanitization times, no itemset is restrictive. The ( ⎡ ⎤∑
=

−×
||

1
)1(||

RI

j
r j

db ψ +1)-th time 

deletion is invalid. Therefore, the upper bound of sanitization process is 
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⎡ ⎤∑
=

−×
||

1
)1(||

RI

j
r j

db ψ . 

(2) Lower bound: In the best case, each valid item-sanitization can decrease the support 

of all restrictive itemsets by one. Using the privacy threshold, ψ, an arbitrary restrictive 

itemset requires decreasing its support count by ⎥
⎥

⎤
⎢
⎢

⎡
−× )1(|| ψ

jrdb . Therefore, the 

sanitization process requires at least 
⎥
⎥

⎤
⎢
⎢

⎡ −×
∈

)1(||max ψ
jrdb

RIrj

 valid item-sanitizations. When 

the number of deleted items is less than 
⎥
⎥

⎤
⎢
⎢

⎡ −×
∈

)1(||max ψ
jrdb

RIrj

, there exists at least one 

restrictive itemset that has a support value greater than ψ. Therefore, the lower bound of 

sanitization process is 
⎥
⎥

⎤
⎢
⎢

⎡ −×
∈

)1(||max ψ
jrdb

RIrj

. 

Q.E.D. 

Definition 4.2. Let DelItem(DB) be the total number of items deleted using a 

sanitization process on DB with a set of restrictive itemsets RI. The percentage of 

DelItem(DB) to ⎡ ⎤∑
=

−×
||

1
)1(||

RI

j
r j

db ψ  is called the sanitization rate (SR). That is, SR = 

⎡ ⎤∑
=

−×
||

1
)1(||

)(DelItem
RI

j
r j

db

DB

ψ
. 

The sanitization rate can be employed to measure the impact on the source database. 

When performing a sanitization process on a source database with a set of restrictive 

itemsets and a certain privacy threshold, a process with a high SR has a greater impact 

on the source database than one with a low SR. Minimizing the SR value means that the 

sanitization process has a minimum impact on the source database. For each valid 

item-sanitization, MICF selects a victim item of a sensitive transaction, of which the 

number of restrictive itemsets containing the item and included in the transaction is 

maximal. The support counts of these restrictive itemsets are reduced by one, while the 

item is deleted from the transaction. The total number of valid item-sanitizations can be 

reduced. Therefore, MICF has a low sanitization rate. 
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4.2. Time Complexity 

Theorem 4.2. The running time of the MICF algorithm is 

O(n1×n2×(logn2+n1×s1
2×logs2)), where n1 = |RI|, s1 is the maximum length of restrictive 

itemsets in RI, n2 = |DB|, and s2 is the maximum length of transactions in DB. 

Proof. Let DB be the source transaction database, n1 be the number of restrictive 

itemsets RI, s1 be the maximum length of restrictive itemset in RI, n2 be the number of 

transactions in DB and let s2 be the maximum length of transactions in DB. MICF 

consists of four sub-procedures. According to the MICF algorithm in Section 3.2, the 

time complexity analysis is as follows:  

(1) In Line 1, sorting the restrictive itemsets by support counts requires O(n1×logn1). In 

Line 2 of the MICF algorithm, for each transaction in DB, the algorithm searches 

each restrictive itemset to determine whether it is a subset of the transaction. If the 

transaction Tq is sensitive, MICF accumulates its Tdegree(Tq) and loads Tq into the 

main memory. For each transaction Tq, MICF requires O(n1×s1) binary searches to 

match individual item on Tq. The search cost of one binary search on Tq is O(logs2). 

Therefore, the execution time complexity of n2 transactions is O(n1×s1×n2×logs2). 

The total time complexity of Lines 1 and 2 is O(n1×logn1 + n1×s1×n2×logs2). 

Considering that n1×logn1 << n1×s1×n2×logs2, the running time of the sub-procedure 

can be simplified to O(n1×s1×n2×logs2). 

(2) In Line 5, in the worst case, dbrj = db = DB. For each restrictive itemset, MICF 

requires O(s1) binary searches on n2 sensitive transactions. We get that extracting 

dbrj for an rj requires O(s1×n2×logs2). Therefore, the execution time complexity of 

n1 restricitve itemsets are O(n1×s1×n2×logs2). Lines 4, 6 and 7 are executed n1 times. 

Their time complexities are O(n1), O(n1×n2×logn2) and O(n1), respectively. 

Considering that n1 << n1×n2×logn2, the running time of the sub-procedure can be 

simplified to O(n1×s1×n2×logs2 + n1×n2×logn2).  
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(3) According to Theorem 4.1, Lines 9 to 19 are executed O( ⎡ ⎤∑
=

−×
||

1
)1(||

RI

j
r j

db ψ ) = 

O( ∑
=

||

1
||

RI

j
r j

db ) times. In the worst case, ∑
=

||

1
||

RI

j
r j

db  = n1×n2. The time complexity 

analysis of this sub-procedure focuses on Line 12 because the running time of Line 

12 dominates the total running time of Lines 9 to 19. In Line 12, for each sensitive 

transaction, MICF requires finding out all sub-itemsets in RI’. Executing Line 12 

once requires O(n1×s1) binary searches on a sensitive transaction. Therefore, the 

time complexity of executing Line 12 once is O(n1×s1×logs2). MICF calculates 

Idegree(ip, rj, Tq) O(n1×n2×s1) times. The running time of this sub-procedure is 

O(n1×n2×s1×n1×s1×logs2) = O(n1
2×s1

2×n2×logs2). 

(4) In Lines 20 to 24, the time complexity of writing the released database on disk 

requires O(n2×s2). 

The running time of the MICF algorithm is the sum of running times for each 

sub-procedure executed. However, the second and third sub-procedures dominate the 

total execution time of MICF. Therefore, the time complexity of MICF is 

O(n1×s1×n2×logs2 + n1×n2×logn2 + n1
2×s1

2×n2×logs2). Considering that n1×s1×n2×logs2 

<< n1
2×s1

2×n2×logs2, the running time of MICF can be simplified to O(n1×n2×logn2 + 

n1
2×s1

2×n2×logs2) = O(n1×n2×(logn2+n1×s1
2×logs2)). 

Q.E.D. 
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5. Experimental Results 

To measure the effectiveness of MICF, experiments were conducted on both 

simulated and real datasets to compare its misses costs and sanitization rates with that 

of Algo2b, MaxFIA, MinFIA and IGA. All experiments were performed on an AMD 

Barton ES 2900+ (2000MHz) PC with 1 GB of main memory, running Windows XP 

Professional. All algorithms were coded in Visual C++ 6.0, and employed the same 

array structure to store all restrictive transactions in the main memory.  

Given a minimum support threshold and an original dataset, the NFP-tree 

algorithm [16], a varied FP-tree algorithm, was employed to generate all frequent 

itemsets for the original dataset. A certain number, |RI|, of restrictive itemsets were 

randomly selected from a set of frequent itemsets in each dataset with a length between 

three and eight, in which none of the itemsets was a subset of the other. To measure the 

misses cost of each algorithm in the same no hiding failure situation for each restrictive 

itemset, each algorithm sanitized transactions in sequence until the support value of the 

restrictive itemset became zero (ψ = 0%).  

Table 5 lists a summary of the datasets used in this experiment. Each transaction in 

these datasets was transformed from binary format to the text format “Transaction 

length n, Item1, Item2, …, Itemn”. Table 6 lists the characteristics of the four sets of 

restrictive itemsets. 
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Table 5. Characteristics of four experimental datasets 

Dataset Transaction 
number 

Distinct 
items 

Average 
length  

Shortest 
length  

Longest 
length 

Dataset 
size 

T10.I6.D100k.N500 100,000 495 10.5 1 30 4.42MB 

T20.I10.D100k.N500 100,000 496 19.9 1 49 7.97MB 

BMS-WebView-1 59,602 497 2.5 1 267 0.78MB 

BMS-WebView-2 77,512 3,340 4.6 1 161 1.86MB 

 

Table 6. Characteristics of used restrictive itemsets in four experimental datasets 

Restrictive itemsets in 
which dataset 

|RI| 
}

||

||
{min

DB

DB
j

j

r

RIr ∈
 }

||

||
{max

DB

DB
j

j

r

RIr ∈
 

Average 
length  

Shortest 
length  

Longest 
length 

T10.I6.D100k.N500 800 0.040% 0.132% 5.4 3 8 

T20.I10.D100k.N500 400 0.100% 0.567% 5.8 3 8 

BMS-WebView-1 800 0.065% 0.589% 4.5 3 6 

BMS-WebView-2 800 0.024% 0.315% 5.2 3 6

5.1 Comparison of Misses Cost 

The IBM synthetic data generator [27] was used to generate two datasets, 

T10.I6.D100k.N500 and T20.I10.D100k.N500. The parameters used are similar to 

those in [12] to produce transaction-like datasets for market-basket analysis.  

Figs. 2(a) and 3(a) plot the performance curves of misses cost associated with 

these algorithms over various minSup applied to T10.I6.D100k.N500 and 

T20.I10.D100k.N500, respectively, when the privacy threshold is 0%. In Figs. 2(b) and 

3(b), to compare the misses costs associated with these algorithms over various 

numbers of restrictive itemsets, the values of minSup are set to 0.04% and 0.1%, 

respectively.  

In Fig. 2(a), the range of minSup is between 0.01% and 0.1% with |RI| = 200. Fig. 

2(a) demonstrates that MICF performs the best and attains the lowest misses cost, 

except in the case where minSup = 0.09%. Fig. 2 shows that MICF has the best result 

among these alternative algorithms in most scenarios.  
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In Fig. 3(a), the range of minSup is between 0.06% and 0.14%, MICF performs the 

best among the five algorithms. For example, the misses cost of MICF is less than that 

of IGA by 6.02% when minSup = 0.1%. In Fig. 3(b), MICF has the lowest misses cost, 

except in the case where |RI| = 400.  

A sanitization process can also reduce support counts of some non-restrictive 

itemsets in ~RI. Let ~RI’ denote the set of non-restrictive itemsets in DB, which 

support values decrease after a sanitization process. A process of frequent itemset 

discovery with a lower minSup has a higher possibility to recover itemsets in ~RI’. 

Therefore, in Fig. 2(a), for a low minimum support value between 0.01% and 0.04%, 

the misses costs increase with increasing minSup. However, for a higher minSup 

between 0.05% and 0.1% in Fig. 2(a), the misses cost decreases with increasing 

minSup. Decreasing the support value of an infrequent itemset both in DB and in DB’ 

does not concern the misses cost. The possibility of an itemset in ~RI’ becoming 

infrequent increases both in DB and in DB’ when minSup increases. Therefore, in Fig. 

2(a) the misses cost curves increase then decrease with increasing minSup. The curves 

in Fig. 3(a) are similar. 
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Fig. 2. Comparison of the misses cost on T10.I6.D100k.N500 with (a) |RI| = 200 and (b) 
minSup = 0.04% 
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Fig. 3. Comparison of the misses cost T20.I10.D100k.N500 with (a) |RI| = 50 and (b) 
minSup = 0.1% 

 

This study also compares the misses cost of algorithms running on two real 

datasets, BMS-WebView-1 and BMS-WebView-2, which are real datasets of several 

months’ click stream data from two e-commerce web sites [28]. As shown in Figs. 4(a) 

and 4(b), the algorithms ran on BMS-WebView-1 over various minSup values and 

various numbers of restrictive itemsets, respectively. In Fig. 4(a), with |RI| = 200, 

Algo2b has the lowest misses cost for a minimum support below 0.064%. For a higher 

support value between 0.066% and 0.7%, IGA and MICF outperform other methods. In 

Fig. 4(b) with minSup = 0.064%, MICF performs the best among five methods when 

|RI| between 400 and 800. MinFIA, Algo2b and MaxFIA have the lowest misses cost 

with |RI| are 100, 200 and 300, respectively. 

For BMS-WebView-2 with |RI| = 200, shown in Fig. 5(a), MICF has the best 

performance. As shown in Fig. 5(b), MICF outperforms IGA when minSup = 0.024%.  
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Fig. 4. Comparison of the misses cost on BMS-WebView-1 with (a) |RI| = 200 and (b) 
minSup = 0.064% 

 
BMS-WebView-2, privacy threshold = 0%

80%

85%

90%

95%

100%

0.012 0.016 0.020 0.024 0.028 0.032 0.036

minSup(%)

M
is

se
s 

co
st

 (
%

)

Algo2b

MaxFIA

MinFIA

IGA

MICF

BMS-WebView-2, privacy threshold = 0%

80%

85%

90%

95%

100%

100 200 300 400 500 600 700 800

Number of restrictive itemsets

M
is

se
s 

co
st

 (
%

)

Algo2b

MaxFIA

MinFIA

IGA

MICF

 
(a) (b) 

Fig. 5. Comparison of the misses cost on BMS-WebView-2 with (a) |RI| = 200 and (b) 
minSup = 0.024% 

 

5.2 Comparison of Sanitization Rate 

The sanitization rate was used to evaluate the impact on the source datasets. MICF 

and four alternate algorithms ran on four datasets (T10.I6.D100k.N500, 

T20.I10.D100k.N500, BMS-WebView-1 and BMS-WebView-2) with minimum 

support 0.04%, 0.1%, 0.064% and 0.024%, respectively. Each experiment set ψ to be 

0%. In Figs. 6(a) to 6(d), MICF always has the lowest sanitization rate. The sanitization 

rates of MICF are less than that of IGA by at least 4.8%, 2.7%, 3.1% and 4.6%, 

respectively.  
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BMS-WebView-2, privacy threshold = 0%
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Fig. 6. Comparison of the sanitization rate on (a) T10.I6.D100k.N500 with minSup = 
0.04%, (b) T20.I10.D100k.N500 with minSup = 0.1%, (c) BMS-WebView-1 with 
minSup = 0.064%, and (d) BMS-WebView-2 with minSup = 0.024% 

 

5.3 Comparison of running time 

Figs. 7(a) to 7(d) present the running time curves of all algorithms on 

T10.I6.D100k.N500, T20.I10.D100k.N500, BMS-WebView-1 and BMS-WebView-2, 

respectively. To reduce the effect of disk reading and writing, the running time 

excluded the execution time of the disk I/O. The running time of MICF sub-linearly 

increased with the growth of the number of restrictive itemsets. In Fig. 7(c), Algo2b 

performed the fastest, followed in order of efficiency by MaxFIA, IGA, MinFIA, and 

MICF. In the other three figures, the performance of the three algorithms MaxFIA, 

IGA, and MinFIA were too close to be ordered. Although MICF had the longest 

running time among the five approaches, it ran quickly on the four test datasets. For 



 

29 

example, in the worst case in Fig. 7(d), MICF only required 29.1 seconds to sanitize 

800 restrictive itemsets.  
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Fig. 7. Comparison of running time on (a) T10.I6.D100k.N500, (b) 
T20.I10.D100k.N500, (c) BMS-WebView-1, and (d) BMS-WebView-2 
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6. Conclusions 

Data mining techniques can discover useful information from databases. Accurate 

input data leads to meaningful mining results, but problems arise when users provide 

fictitious data to protect their privacy. In this competitive but also cooperative business 

environment, companies need to share information with others, while at the same time 

protecting their own confidential strategic. For this kind of data sharing to be possible, 

this study proposes the Maximum Item Conflict First (MICF) algorithm to reduce the 

impact on the source database for preserving privacy in mining frequent itemsets. 

MICF employs the strategy of maximum degree of item conflict first to simultaneously 

decrease the support of the maximum number of restrictive itemsets. In our 

experimental results, MICF outperforms all other algorithms in several simulated and 

real datasets on misses costs for most cases. Furthermore, MICF always has the lowest 

sanitization rates than the other four methods. 

The intention is to develop superior algorithms to further reduce the misses cost 

without hiding failure to protect sensitive data and without generating any artificial 

frequent itemset.  
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