

Fast Codebook Search Algorithms Based on Tree-

Structured Vector Quantization

Chin-Chen Chang1,2, Yu-Chiang Li2, and Jun-Bin Yeh2

1Department of Information Engineering and Computer Science,

Feng Chia University, Taichung 40724, Taiwan, R.O.C.
2Department of Computer Science and Information Engineering,

National Chung Cheng University, Chiayi 621, Taiwan, R.O.C.

E-mail: {ccc, lyc, ycp92}@cs.ccu.edu.tw

Abstract. Tree-Structured Vector Quantization (TSVQ) is a highly

efficient technique for locating an appropriate codeword for each input

vector. The algorithm does not guarantee that the selected codeword is

the closest one to the input vector. Consequently, the image quality of

TSVQ is worse than that of full-search VQ (FSVQ). Although

researchers have proposed multipath TSVQ and DP-TSVQ to enhance

the image quality, these methods are still too slow for achieving high

image quality. Therefore, this study presents a novel Full Search

Equivalent TSVQ (FSE-TSVQ) to obtain efficiently the closest

codeword for each input vector. FSE-TSVQ employs the triangle

inequality to achieve efficient pruning of impossible codewords.

Moreover, this study also develops the Enhanced DP-TSVQ (EDP-

TSVQ) algorithm, which achieves a better tradeoff than DP-TSVQ

between encoding time and image quality. EDP-TSVQ is a hybrid

technique which adds DP-TSVQ’s critical function to FSE-TSVQ.

EDP-TSVQ always provides an image quality identical to that of DP-

TSVQ, but by searching fewer codebook tree nodes. Simulation results

reveal that FSE-TSVQ requires only 21% to 38% of the running time

of FSVQ. For a high image quality application, the performance of

EDP-TSVQ is always better than that of DP-TSVQ. Using the

example of a codebook tree with 512 codewords, with the threshold of

the critical function set to 0.6, simulation results indicate that EDP-

TSVQ requires only 37% of the execution time of DP-TSVQ.

Keywords. Codebook search, tree-structured vector quantization,

codebook, vector quantization

1

1 Introduction

Recent developments in multimedia and computer networks have resulted in the

widespread use of electronic file transmissions to replace traditional postal mail.

However, due to the large size of multimedia data files and the bandwidth restrictions

of computer networks, data transmission is inefficient. Data can be compressed to

reduce its size, improving the efficiency of its transmission across computer networks.

Vector Quantization (VQ) is a basic efficient coding technique for speech and image

compression [1, 16]. In recent years, VQ has been successfully used in numerous

applications including image encoding and image recognition [8].

Traditionally, VQ is separated into three phases: codebook generation, vector

encoding, and vector decoding [7]. In the first phase, Linde-Buzo-Gray (LBG), one

of the best-known algorithms for this purpose, is used to develop the codebook [1].

The LBG algorithm decomposes all training images into a training set of small

rectangular blocks (called vectors or codewords). The size of each block is w× h = k.

Each vector is therefore a k-dimensional codeword containing k pixel values. Next,

LBG randomly selects n codewords as centroids and generates the initial codebook

CB (CB = {ci | i = 1, 2, …, n }, where ci is a codeword). Subsequent iterations can

improve the quality of the codebook. In each iteration, LBG computes the distortions

between a training vector and each centroid. Each training vector is placed in the

closest ci class. LBG then calculates the total distortion between each training vector

and each centroid, replaces the centroid ci with the closest training vector, and repeats

the process until the reduction in total distortion is insignificant. The distortion

between the input vector X and a codeword ci is defined as their squared Euclidean

distance (mean squared error) or their Euclidean distance. Equations (1) and (2)

describe respectively the mean squared error (MSE) and the Euclidean distance

between two vectors.

MSE(X, ci) = 2
icX − = ∑

=
−

k

j
ijj cX

1

2)(, (1)

d(X, ci) = icX − = ∑
=

−
k

j
ijj cX

1

2)(,
(2)

2

where Xj and cij represent the value of the jth dimension of X and the jth dimension of

ci, respectively.

In the second phase, the VQ encoder breaks up the source image into a number of

k-dimensional vectors. The encoder searches the codebook CB to obtain the closest

codeword ci for each input vector X. VQ then encodes the input vector X into an

index i, whose size is only log2n bits. This compression significantly reduces the size

of the digital file. This phase is also called codebook matching.

In the third phase, the decoder replaces each index value i in the compressed

image with the corresponding codeword ci. In this way, the VQ decoder can easily

reconstruct the image.

A major issue in VQ is finding an efficient method of matching the closest

codeword to an input vector from the codebook. The full-search VQ (FSVQ)

algorithm is the simplest method. However, this exhaustive search approach is time-

consuming. Researchers have proposed numerous fast search approaches to speed up

the codebook matching process, including TSVQ [1, 2, 3, 6, 9, 11], look-up table [4,

19], Pyramid [12, 17, 20], the transform method [13], and other techniques [5, 10, 14,

15, 18].

Among these methods, TSVQ is a very important and efficient approach. It uses

a binary tree to decrease the computational complexity of the search for the closest

codeword. The original single-path search TSVQ [1] reduces the computational

complexity of codebook matching from O(kn) to O(klogn). However, the selected

codewords are not, in general, the nearest ones to the input vectors. Consequently, the

image quality of single-path TSVQ is much poorer than that of FSVQ.

The multipath TSVQ algorithm has been proposed to improve the image quality

by increasing the number of search paths traversed to find the closest codeword [3].

For the same purpose, Closest-Couple TSVQ (CC-TSVQ) enlarges the search range

of each search path to match more approximate codewords [2] than the single one

obtained with multipath TSVQ. Nevertheless, multipath TSVQ and CC-TSVQ do not

eliminate the wrong direction paths, which have large distortions between the leaf

nodes and the input vectors. Dynamic Path TSVQ (DP-TSVQ) defines a critical

function with the intention of improving the accuracy of TSVQ search results [6].

The various TSVQ approaches do not guarantee that the selected codeword is the

closest one to an input vector. Multipath TSVQ and DP-TSVQ add more search paths

to improve the image quality. However, these methods do not include an efficient

3

strategy for producing a high-quality image. This study therefore proposes a novel

Full Search Equivalent TSVQ (FSE-TSVQ) algorithm for fast encoding. To provide

further acceleration of the encoding phase, this study develops an Enhanced DP-

TSVQ (EDP-TSVQ) algorithm with a better time-quality tradeoff than DP-TSVQ. To

simplify the discussion, this study focuses on accelerating the codebook matching in

the encoding phase using TSVQ, assuming that the codebook tree is already given.

The rest of this paper is organized as follows. Section 2 introduces the

background and different versions of TSVQ. Section 3 then describes the first

scheme to be developed, which is a fast full search equivalent TSVQ (FSE-TSVQ)

algorithm based on the triangle inequality. In addition, Section 4 explains the

proposed Enhanced DP-TSVQ (EDP-TSVQ) algorithm, and demonstrates that EDP-

TSVQ and DP-TSVQ have identical image qualities. Section 5 provides experimental

results and evaluates the performance of the proposed algorithms. Finally, Section 6

presents conclusions.

4

2 Related Work

2.1 General Remarks

TSVQ [1, 8, 9] is an efficient method for reducing the complexity of a codebook

search. A binary tree structure is used to represent the codebook, which is called the

codebook tree. All internal nodes are used to partition codewords into two groups.

Each leaf node stores a codeword. The codebook tree is created in the codebook

generation phase.

Moving from the root to the leaf node, the single-path TSVQ algorithm chooses

the nearest child node as the descent path for each input vector. Finally, the selected

leaf node is treated as the closest codeword. Although single-path TSVQ is fast, the

probability of locating the true closest codeword is low. Multipath TSVQ has

therefore been proposed to improve image quality [3].

2.2 Multipath TSVQ

The multipath TSVQ algorithm has been proposed to alleviate the problem of

poor image quality produced by single-path TSVQ [3]. It follows m paths to search

for the closest codeword. At each level of the codebook tree, multipath TSVQ

compares 2m child nodes and selects m nearest internal nodes for each input vector.

At the leaf level, multipath TSVQ examines m candidate codewords and selects from

these candidates the one closest to the input vector. Consequently, multipath TSVQ

produces a higher image quality than that of single-path TSVQ. If m = 1, multipath

TSVQ degenerates into single-path TSVQ. The more search paths are traced in

TSVQ, the more closer codeword will be found. However, multiple search paths

increase the computational complexity significantly, and most search paths used by

multipath TSVQ are in fact redundant. Furthermore, multipath TSVQ does not

always match the global closest codeword to the input vector.

Example 2.1 Consider the codebook tree in Fig. 1 with eight two-dimensional

codewords and input vector X = (100, 100). Except for the root, each node has an

integer number outside the node, which indicates the mean squared error between the

input vector X and the corresponding node. The two paths followed by two-path

TSVQ are A-D-I and B-E-K. Two-path TSVQ selects the codeword I as the closest

5

codeword to X. However, the closest codeword to X is in fact the codeword H.

Moreover, in this example, calculating the path B-E-K is redundant.

Input vector X

(100, 100)

A
(92, 99)

root

G
(85, 86)

D
(95, 105)

C
(89, 93)

H
(94, 100)

J
(97, 107)

I
(94, 104)

N
(117, 127)

M
(110, 123)

L
(104, 110)

K
(105, 106)

E
(104, 108)

F
(113, 125)

B
(109, 117)65 370

170 50

421 36 52 58 61 116 629 1018

80 794

Figure 1. Example of two-path TSVQ

2.3 Dynamic Path TSVQ (DP-TSVQ)

Dynamic Path TSVQ (DP-TSVQ) is an adaptive multipath variation of TSVQ

[6]. Unlike the multipath TSVQ algorithm, which fixes the number of the search

paths, DP-TSVQ increases the number of search paths dynamically. DP-TSVQ

defines a critical function to judge whether to increase the number of search paths.

Let CIN indicate the current internal node, which DP-TSVQ is traversing. The critical

function is defined as follows.

F(X, CIN) =
))(,())(,(
))(,())(,(

CINRchildXMSECINLchildXMSE
CINRchildXMSECINLchildXMSE

+

−
, (3)

where X is the input vector. Lchild(CIN) and Rchild(CIN) denote the left child node

and right child node of CIN, respectively. MSE() is the mean squared error between

the two vectors, as defined in Eq. (1).

The critical function has the following characteristic: when the value of F(X,

CIN) is close to 1, the difference between MSE(X, Lchild(CIN)) and MSE(X,

Rchild(CIN)) is very large; otherwise, these two children of CIN have a similar

distance to X. Accordingly, DP-TSVQ employs the value of the critical function to

determine dynamically whether to add paths for further search. The user assigns a

value to the threshold TH. If F(X, CIN) ≤TH, DP-TSVQ selects both children of CIN

to search; otherwise, DP-TSVQ only traverses the nearest child node to X.

6

Example 2.2 Consider the same codebook tree as in Example 2.1, with input vector

X = (100, 100). Assume that the threshold of the critical function is 0.7. Initially, DP-

TSVQ takes a single search path from the root of the codebook tree. According to

Fig. 2, the value of the critical function of the root, 0.677, is smaller than the

threshold, that is, the difference between MSE(X, A) and MSE(X, B) is not too large.

Therefore, DP-TSVQ adds the second search path, which involves B_node. Similarly,

at the next level of the tree, the third path A-C is added to the search. Finally, the

three search paths followed by DP-TSVQ are A-D-I, A-C-H and B-E-K. DP-TSVQ

matches the closest codeword H to X.

DP-TSVQ performs fast in a low threshold situation, but produces a low image

quality. In the above example, if TH = 0.5, F(X, A) = 0.545 > TH. DP-TSVQ selects

the codeword I rather than the codeword H as the closest codeword to X. When the

value of the threshold equals one, the image quality is as good as that of FSVQ.

However, DP-TSVQ does not limit the number of search paths. The running time of

DP-TSVQ with TH = 1 is even longer than that of FSVQ.
Input vector X

(100, 100)

A
(92, 99)

root

G
(85, 86)

D
(95, 105)

C
(89, 93)

H
(94, 100)

J
(97, 107)

I
(94, 104)

N
(117, 127)

M
(110, 123)

L
(104, 110)

K
(105, 106)

E
(104, 108)

F
(113, 125)

B
(109, 117)

|370-65|/(370+65)
=0.677<TH

370

170

421 36 52 58 61 116 629 1018

80 794

|170-50|/(170+50)
=0.545<TH

65

50

|794-80|/(794+80)
=0.817>TH

Figure 2. Example of DP-TSVQ with TH = 0.7

7

3 Full Search Equivalent TSVQ (FSE-TSVQ)

As described in the previous section, the searches performed by various TSVQ

algorithms do not always result in the selection of the best codeword. This study

develops a fast full search equivalent TSVQ algorithm (FSE-TSVQ) to obtain the

global closest codeword.

Definition 1 Let IN be an internal node of the FSE-TSVQ codebook tree. The set of

codewords CBIN = {ci| i = 1, 2, …, p}, where ci is a codeword in the subtree of IN.

Let R(IN) indicate the radius of IN. R(IN) = max
INi CBc ∈

{d(IN, ci)}, where d(IN, ci) is the

Euclidean distance defined in Eq. (2).

Each node of the FSE-TSVQ codebook tree is identical to that of the DP-TSVQ

codebook tree, except that each internal node of the FSE-TSVQ codebook tree stores

one additional value, the radius. FSE-TSVQ applies the triangle inequality to avoid

searching useless paths, which could not improve the image quality. Therefore, FSE-

TSVQ uses Euclidean distance rather than mean squared error to measure the

distortion.

Definition 2 Let X be the input vector, LC be the local closest codeword and GC be

the global closest codeword. Let CB be the codebook and CBv be the set of

codewords which FSE-TSVQ has visited, where CB = {ci| i = 1, 2, …, n} and CBv =

{ci| i = 1, 2, …, q}. The distances of GC and LC to X are d(X, GC) =min
CBci∈

{d(X, ci)}

and d(X, LC) = min
vi CBc∈

{d(X, ci)}, respectively.

FSE-TSVQ employs single-path TSVQ to find the first local closest codeword

LC. Let CIN represent the current internal node, which FSE-TSVQ is traversing, and

let its two child nodes be Lchild(CIN) and Rchild(CIN). According to the triangle

inequality, no codeword in the Rchild(CIN) subtree is closer to X than LC if

d(X, LC) + R(Rchild(CIN)) < d(X, Rchild(CIN)).

Figure 3 depicts the above inequality in two-dimensional space. If a codeword is

closer to X than LC, the codeword must be found inside the dotted circle. In the

8

figure, no node in the right subtree of CIN is closer to X than LC. By Definition 2, the

distance between X and GC is not greater than d(X, LC) so that

d(X, GC) + R(Rchild(CIN)) < d(X, Rchild(CIN)).

Therefore, the path terminates in Rchild(CIN). Otherwise, FSE-TSVQ performs a

depth-first traverse of the next level of CIN. The value d(X, LC) is called the bound

value. If FSE-TSVQ matches a codeword which is nearer to X than the previously

found LC, FSE-TSVQ updates the bound value d(X, LC) to perform further pruning of

impossible paths.

Figure 3. Two-dimensional representation of the inequality d(X, LC) + R(Rchild(CIN))

< d(X, Rchild(CIN))

9

A pseudo-code representation of the FSE-TSVQ algorithm is as follows.

Input: (1) A codebook tree of TSVQ with n codewords in the leaf level (each internal

node storing an extra value of radius)

(2) A set of input vectors

Output: An encoded image

Procedure:
01 for each input vector X do {
02 Single-Path_TSVQ(X); // obtain the initial LC and push internal nodes onto the stack
03 while top > -1 { // 0 ≤ top ≤ log2n - 1
04 CIN := stack[top]; top--; // pop off of the top of the stack
05 while (true) {
06 Dleft := d(X, Lchild(CIN));
07 Dright := d(X, Rchild(CIN));
08 if child of CIN is an internal node {
09 dist[0] := R(Lchild(CIN)) + bound - Dleft;
10 dist[1] := R(Rchild(CIN)) + bound - Dright;
11 if dist[0] ≤ 0 && dist[1] ≤ 0 {
12 break; }
13 elseif dist[0] ≤ 0 && dist[1] > 0 {
14 CIN := Rchild(CIN); }
15 elseif dist[0] > 0 && dist[1] ≤ 0 {
16 CIN := Lchild(CIN); }
17 elseif dist[0] > 0 && dist[1] > 0 {
18 if dist[0] ≥ dist[1] {
19 stack[++top] := Rchild(CIN);
20 CIN := Lchild(CIN); }
21 else {
22 stack[++top] := Lchild(CIN);
23 CIN := Rchild(CIN); } }
24 continue; }
25 if bound > min(Dleft, Dright) { // child of CIN is a leaf node
26 bound := min(Dleft, Dright);
27 LC = Dleft < Dright ? Lchild(CIN) : Rchild(CIN); }
28 break;
29 }
30 }
31 GC := LC;
32 return the index value of GC;
33 }

In Line 2, the function Single-Path_TSVQ(X) applies the single-path TSVQ

algorithm to match a local closest codeword to X, which is the initial index value of

LC. Then the function visits each branch of the path to determine whether the leaf

nodes in the subtree of each branch could include GC. Single-Path_TSVQ(X) obtains

the initial LC, computes the initial bound value, and pushes the nodes of branches

onto the stack along with the path. Lines 11-23 employ the triangle inequality to

10

remove impossible paths. In Lines 11 and 12, unlike m-path TSVQ and DP-TSVQ,

FSE-TSVQ could skip both the child nodes of CIN. Lines 25-26 update the bound

value, and Line 27 updates LC. The pseudo-code of the function Single-

Path_TSVQ(X) is as follows.

Function Single-Path_TSVQ(X)

01 CIN := root; top := -1; j := 0; // top is the current location of the top of the stack
02 while X is an internal node {
03 Dleft := d(X, Lchild(CIN));
04 Dright := d(X, Rchild(CIN));
05 if (Dleft < Dright) {
06 stack[++top] := Rchild(CIN);
07 CIN = Lchild(CIN); }
08 else {
09 stack[++top] := Lchild(CIN);
10 CIN = Rchild(CIN); }
11 }
12 if (Dleft < Dright) { bound := Dleft; }
13 else { bound := Dright; }
14 LC := CIN;
15 for i := 0 to top { // top := log2n - 1
16 dist[0] = R(stack[i]) + bound - d(X, stack[i]);
17 if (dist[0] > 0) {
18 stack[j] := stack[i];
19 j++;
20 }
21 }
22 top := j - 1;

Lines 5-10 push the branch nodes onto the stack along with the path. Lines 15-

21 keep any branch nodes in the stack whose subtrees could include GC.

Example 3.1 Consider the same codebook tree as in Example 2.1, with input vector

X = (100, 100). According to Fig. 4, except for the root, each node has a real number

outside the node. Each of these values represents the Euclidean distance between the

input vector X and the corresponding node. Table 1 lists the radius of each internal

node. Initially, FSE-TSVQ employs a single search path to find the local closest

codeword I and computes its Euclidean distance from X as the bound value (52).

FSE-TSVQ is a depth-first algorithm and the right child of A_node has been

traversed. Since 52 + 218 > 170 , FSE-TSVQ visits the second path, which

includes C_node (the left child of A_node), until the leaf node is reached. FSE-TSVQ

obtains the second local closest codeword H and updates the bound value as 36 .

11

Then FSE-TSVQ determines whether the right subtree of the root needs to be

traversed. Since 36 + 164 < 370 , FSE-TSVQ skips the B_subtree and terminates.

FSE-TSVQ uses the pre-computed and pre-stored radii in the codebook tree to

reduce the complexity of the closest codeword search. Moreover, the image quality of

FSE-TSVQ equals that of FSVQ. The process of computing the radius of each

internal node needs to execute only once in the codebook generation phase, in contrast

with the encoding phase, where the FSE-TSVQ algorithm can repeat execution

indefinitely. Therefore, the cost of computing radii can be disregarded.

Input vector X

(100, 100)

A
(92, 99)

root

G
(85, 86)

D
(95, 105)

C
(89, 93)

H
(94, 100)

J
(97, 107)

I
(94, 104)

N
(117, 127)

M
(110, 123)

L
(104, 110)

K
(105, 106)

E
(104, 108)

F
(113, 125)

B
(109, 117)65 370

170 50 80 794

421 36 52 58 61 1018629116

37016436 <+

17021852 >+

Figure 4. Example of FSE-TSVQ

Table 1. The radius of each internal node

Internal node A B C D E F
Radius 218 164 74 16 5 20

12

4 Enhanced Dynamic Path TSVQ (EDP-TSVQ)

Using a user-defined threshold, DP-TSVQ reduces the image quality to shorten

the encoding time. It dynamically increases the number of search paths to match the

closest codeword as nearly as possible. In environments of low computational

capability, DP-TSVQ is very efficient. However, DP-TSVQ consumes even more

time than FSVQ to encode a high-resolution image. Although FSE-TSVQ decreases

the computational complexity of searching for the nearest neighbor codeword, it does

not further accelerate the process in the case where the image quality is slightly

degraded. A higher image quality requires a longer encoding time. This study

therefore proposes an Enhanced DP-TSVQ (EDP-TSVQ) algorithm with a better

tradeoff between encoding time and image quality than DP-TSVQ.

DP-TSVQ is fast if the threshold is low, and FSE-TSVQ always has the best

image quality. The proposed EDP-TSVQ algorithm attempts to combine the

advantages of DP-TSVQ and FSE-TSVQ. EDP-TSVQ can be viewed as adding the

critical function of DP-TSVQ into FSE-TSVQ. First, like FSE-TSVQ, EDP-TSVQ

employs the triangle inequality to prune several unattainable paths. Furthermore,

EDP-TSVQ calculates the value of the critical function in each internal node, as does

DP-TSVQ, to determine whether the distances of the two child nodes to X are similar.

EDP-TSVQ combines the FSE-TSVQ and DP-TSVQ algorithms to produce a better

time-quality tradeoff. EDP-TSVQ only needs to modify Lines 17-23 of the pseudo-

code of FSE-TSVQ as follows.

01 elseif dist[0] > 0 && dist[1] > 0 {
02 fvalue := Critical(CIN);
03 if dist[0] ≥ dist[1] {
04 if (fvalue ≤ TH) {
05 stack[++top] := Rchild(CIN); }
06 CIN := Lchild(CIN); }
07 else {
08 if (fvalue ≤ TH) {
09 stack[++top] := Lchild(CIN); }
10 CIN := Rchild(CIN); } }

Line 2 adds a critical function Critical() of DP-TSVQ. Lines 4-5 and 8-9 remove

the paths whose critical function value is greater than the threshold. Similarly, EDP-

13

TSVQ also needs to modify Lines 15-21 of the pseudo-code of the function Single-

Path_TSVQ(X) as follows.

01 for i := 0 to top {
02 fvalue := Critical(parent node of stack[i]);
03 dist[0] = R(stack[i]) + bound - d(X, stack[i]);
04 if (dist[0] > 0 && fvalue ≤ TH) {
05 stack[j] := stack[i];
06 j++;
07 }
08 }

According to the EDP-TSVQ algorithm, FSE-TSVQ is a special case of EDP-

TSVQ. When TH = 1, the set of search paths traversed by EDP-TSVQ and FSE-

TSVQ are identical.

Definition 3 Let VDP and VEDP denote the two node sets in which the nodes are

visited by DP-TSVQ and EDP-TSVQ, respectively, where VDP and VEDP contain at

least a leaf node.

Lemma 1 Give a codebook tree and the input vector X. If DP-TSVQ and EDP-

TSVQ have an identical TH, then VEDP⊆VDP.

Proof. Let CIN indicate the currently visited node in the codebook tree. Assume that

a child node Nc of CIN satisfies that Nc∈VEDP and Nc∉VDP. According to the EDP-

TSVQ algorithm, since Nc∈VEDP, F(X, CIN) ≤ TH or Nc is closer to X than its sibling

node. Let us consider the case where DP-TSVQ and EDP-TSVQ have an identical

TH.

(1) According to the DP-TSVQ algorithm, while F(X, CIN) ≤ TH, Nc ∈VDP.

(2) If Nc is closer to X than its sibling node, the node must be traversed by DP-TSVQ.

So Nc∈VDP.

By the description of the two cases, we have Nc∈VDP. This contradicts the original

assumption. Therefore, if DP-TSVQ and EDP-TSVQ have an identical TH, then

VEDP⊆VDP. Q.E.D.

Definition 4 Given an original image with size m×n, the mean squared error between

the original image and the encoded (reconstructed) image is defined as follows.

MSE = ∑∑
= =

−
×

m

i

n

j
ijij yx

nm 1 1

2)(1 , (4)

14

where xij and yij denote the pixel values of the original image and the reconstructed

image, respectively. The quality of the reconstructed image is measured by the peak

signal-to-noise ratio (PSNR). The definition of PSNR is as follows.

PSNR = -10 log10 2255
MSE . (5)

Definition 5 Give an input vector X. Let LCEDP and GCEDP be the local closest

codeword and the global closest codeword of EDP-TSVQ, respectively, where

LCEDP∈VEDP and GCEDP∈VEDP. Let CBEDPc be a set of codewords which EDP-TSVQ

can visit, and let CBEDPh be a set of codewords which EDP-TSVQ has visited. Here

CBEDPh⊆CBEDPc, where CBEDPc = {ci| i = 1, 2, …, p}, d(X, GCEDP) = min
cEDPi CBc ∈

{d(X,

ci)}, CBEDPh = {ci| i = 1, 2, …, q} and d(X, LCEDP) = min
EDPhi CBc ∈

{d(X, ci)}.

Since CBEDPh⊆CBEDPc , we get d(X, GCEDP) ≤ d(X, LCEDP).

Theorem 1 We are given a codebook tree and the input vector X. If DP-TSVQ and

EDP-TSVQ have an identical TH, then DP-TSVQ and EDP-TSVQ have identical

PSNR values (that is, the same image quality).

Proof. According to Lemma 1, owing to DP-TSVQ and EDP-TSVQ having an

identical TH, we have VEDP⊆VDP. Let LN be a leaf node, where LN∈(VDP - VEDP).

Let Anc(LN) be an arbitrary ancestor node of LN. Assuming that LN is closer to X

than GCEDP, we get d(X, LN) < d(X, GCEDP). During the codebook tree traversal of

EDP-TSVQ, since LN ∉ VEDP, there exists an Anc(LN) satisfies the inequality

R(Anc(LN)) + d(X, LCEDP) < d(X, Anc(LN)). Also, we have

d(X, LCEDP) < d(X, Anc(LN)) - R(Anc(LN))

≤ d(X, Anc(LN)) - d(Anc(LN), LN) ≤ d(X, LN).
(6)

By the assumption, we have d(X, LN) < d(X, GCEDP) and d(X, GCEDP) ≤ d(X, LCEDP).

Then d(X, LN) < d(X, LCEDP), which contradicts Eq. (6). So no leaf node in (VDP -

VEDP) is closer to X than GCEDP. EDP-TSVQ and DP-TSVQ select the identical

codeword GCEDP to treat as the closest codeword to X. Therefore, if DP-TSVQ and

EDP-TSVQ have an identical TH, then DP-TSVQ and EDP-TSVQ have identical

PSNR values.

 Q.E.D.

15

5 Experimental Results

This simulation used a 550 MHz AMD Athlon PC with 512MB of main memory,

running the Windows 2000 Professional operating system, to compare the

performances of FSE-TSVQ, EDP-TSVQ, FSVQ and DP-TSVQ. All algorithms

were coded in Visual C++ 6.0. Each experimental image involved 512× 512 pixels

with 256 gray levels. Four training images (Barbara, Boat, Lena, and Toys) were

used to generate the codebook trees. Four test images (Airplane, Baboon, Girl, and

Lena) were employed to test the search efficiency of our proposed algorithms. The

Lena image was used in both the training set and the test set. These images were

divided into various 4× 4 blocks. Therefore, each block was represented by a 16-

dimension input vector.

We used an array to implement the perfect binary codebook tree of DP-TSVQ.

The set of codewords located on the leaf nodes of the codebook tree was exactly the

same as the codebook of FSVQ. The codebook tree of FSE-TSVQ and EDP-TSVQ

was identical except that an extra array was used to store the radius values of each

internal node for FSE-TSVQ. This experiment considered four codebook sizes (256,

512, 104, and 2048).

Table 2 lists the image quality of four reconstructed images. The difference in

PSNR between DP-TSVQ (or EDP-TSVQ) and FSVQ was used to evaluate the image

quality. PSNR is defined in Eq. (5) and the difference is defined as follows.

Diff(Pd) = PFS - Pd, (7)

where PFS represents the PSNR value of FSVQ, and Pd is the PSNR value of DP-

TSVQ (or EDP-TSVQ). DP-TSVQ and EDP-TSVQ have identical values of Diff(Pd)

when they have the same threshold values. This result is in agreement with Theorem

1. In Table 2, the values of Diff(Pd) are between 0.0085dB and 0.0005dB when TH =

0.3. The image quality of DP-TSVQ is close to that of FSVQ. If the threshold value

TH is set to 0.6, the Diff(Pd) values are not greater than 8×10-5dB. Therefore, the

encoding result of DP-TSVQ with TH = 0.6 is sufficient for use in an environment

requiring high image quality. In the four test images, Diff(Pd) = 0 when TH ≥ 0.8.

16

Table 2. The values of Diff(Pd) and the PSNR values of FSVQ
Method DP-TSVQ or EDP-TSVQ Method DP-TSVQ or EDP-TSVQ

Image TH Codebook size Image TH Codebook size
256 512 1024 2048 256 512 1024 2048

Airplane
Diff(Pd)

0 0.66825 0.69377 0.72594 0.83914

Girl
Diff(Pd)

0 0.72359 0.80675 0.84170 0.84772
0.1 0.06992 0.06535 0.07414 0.10404 0.1 0.14346 0.14269 0.15480 0.14668
0.2 0.01647 0.01153 0.01264 0.01551 0.2 0.03778 0.03784 0.03200 0.02541
0.3 0.00404 0.00184 0.00226 0.00257 0.3 0.00845 0.00706 0.00522 0.00552
0.4 0.00151 0.00006 0.00020 0.00066 0.4 0.00106 0.00014 0.00111 0.00198
0.5 0.00026 0.00002 0.00004 0.00007 0.5 0.00010 0.00001 0.0003 0.00014
0.6 0.00001 0 0 0 0.6 0 0 0 0.00010
0.7 0 0 0 0 0.7 0 0 0 0

FSE-TSVQ or
FSVQ (PSNR) 29.80893 30.47185 31.12653 31.77125 FSE-TSVQ or

FSVQ(PSNR) 31.08119 31.78266 32.51071 33.14924

Baboon
Diff(Pd)

0 0.36229 0.40200 0.46716 0.55731

Lena
Diff(Pd)

0 0.50468 0.53282 0.54427 0.57655
0.1 0.03585 0.03435 0.04064 0.04901 0.1 0.08200 0.08210 0.08397 0.09038
0.2 0.00489 0.00379 0.00387 0.00564 0.2 0.01857 0.01206 0.01505 0.01702
0.3 0.00051 0.00063 0.00077 0.00096 0.3 0.00334 0.00219 0.00236 0.00313
0.4 0.00014 0.00003 0.00012 0.00008 0.4 0.00106 0.00051 0.00024 0.00087
0.5 0.00006 0.00001 0 0.00004 0.5 0.00023 0.00016 0.00004 0.00011
0.6 0 0 0 0.00001 0.6 0.00008 0 0.00001 0
0.7 0 0 0 0 0.7 0.00005 0 0 0

FSE-TSVQ or
FSVQ(PSNR) 23.68842 24.08075 24.44554 24.79215 FSE-TSVQ or

FSVQ(PSNR) 31.02359 31.91049 32.79162 33.58789

Table 3 presents the average number of nodes, which needs to be computed for

an input vector, of the four methods using various threshold requirements and various

codebook sizes. The number of nodes given in Table 3 includes the internal nodes

and the leaf nodes. The last two rows of Table 3 list the computed number of nodes

for FSE-TSVQ and FSVQ respectively. Except for TH = 0, the node computation

requirement of EDP-TSVQ is always less than that of DP-TSVQ. This result is in

agreement with Lemma 1. A higher threshold value implies a more significant

difference in the node computation requirement between DP-TSVQ and EDP-TSVQ.

For example, the number of nodes to be computed by EDP-TSVQ is 49-80% of the

number computed by DP-TSVQ when TH = 0.3. The proportion falls to 24-49%

when TH = 0.6. In Table 3, the darker color grids at the bottom denote that the

encoded images have image qualities as high as those produced by FSVQ.

17

Table 3. Average computed number of nodes for an input vector including internal
nodes and leaf nodes

Codebook
size 256 512 1024 2048

Method
Threshold

DP-
TSVQ

EDP-
TSVQ

DP-
TSVQ

EDP-
TSVQ

DP-
TSVQ

EDP-
TSVQ

DP-
TSVQ

EDP-
TSVQ

0 16.00 16.00 18.01 18.01 20.02 20.02 22.05 22.05
0.1 22.42 21.67 28.13 26.43 35.85 32.67 46.92 40.34
0.2 31.42 27.99 44.70 38.18 66.60 49.69 104.21 67.05
0.3 43.18 34.48 68.41 46.85 114.41 68.02 199.95 96.84
0.4 58.25 41.13 99.83 58.51 179.26 87.36 332.11 128.74
0.5 79.74 48.15 147.69 70.70 272.55 108.45 523.02 163.22
0.6 116.47 55.87 221.35 84.35 429.24 132.07 841.94 201.72
0.7 173.22 63.76 338.48 84.46 667.9 156.39 1325.03 241.09
0.8 237.21 71.23 469.87 94.35 934.68 179.25 1863.56 277.58
0.9 329.09 78.22 656.86 122.95 1312.26 201.19 2622.85 312.18
1 510.00 84.93 1022.00 134.18 2046.00 221.13 4094.00 344.54

FSE-TSVQ 84.93 134.18 221.13 344.54
FSVQ 256.00 512.00 1024.00 2048.00

Figures 5-8 depict the average running time for the four test images. The y-axes

denote the average running time, and the x-axes denote various threshold values.

Figure 5 shows that the running time of FSE-TSVQ is 38% of that of FSVQ with a

codebook size of 256. The larger the codebook size, the more significant the

differences in PSNR. In Fig 8, the running time of FSE-TSVQ decreases to 21% of

that of FSVQ. When TH ≥ 0.5, FSE-TSVQ is superior to DP-TSVQ in both running

time and image quality. DP-TSVQ requires more running time than FSVQ when TH

> 0.7. The performance of EDP-TSVQ and DP-TSVQ is almost the same when TH

≤ 0.2. EDP-TSVQ is superior to DP-TSVQ when TH > 0.2. As depicted in Figs. 5-

8, EDP-TSVQ offers a better tradeoff between time and quality than DP-TSVQ.

When TH is set to 0.6 to obtain a high-quality reconstructed image with a codebook

size of 256, the running time of EDP-TSVQ is only 51% of that of DP-TSVQ as

represented in Fig. 5. Similarly, in Figs. 6-8, if TH = 0.6, the running time of EDP-

TSVQ is only 37%, 32% and 25% of that of DP-TSVQ, respectively.

18

0
0.5

1
1.5

2
2.5

3
3.5

0 0.5 1
Threshold

A
ve

ra
ge

 ru
nn

in
g

tim
e

(s
ec

) FSVQ
DP-TSVQ
FSE-TSVQ
EDP-TSVQ

Figure 5. Average running time with 256 codebook size

0
1
2
3
4
5
6
7

0 0.5 1
Threshold

A
ve

ra
ge

 ru
nn

in
g

tim
e

(s
ec

) FSVQ
DP-TSVQ
FSE-TSVQ
EDP-TSVQ

Figure 6. Average running time with 512 codebook size

0

2

4

6

8

10

12

14

0 0.5 1
Threshold

A
ve

ra
ge

 ru
nn

in
g

tim
e

(s
ec

)

FSVQ
DP-TSVQ
FSE-TSVQ
EDP-TSVQ

Figure 7. Average running time with 1024 codebook size

19

0

5

10

15

20

25

30

0 0.5 1
Threshold

A
ve

ra
ge

 ru
nn

in
g

tim
e

(s
ec

) FSVQ
DP-TSVQ
FSE-TSVQ
EDP-TSVQ

Figure 8. Average running time with 2048 codebook size

20

6 Conclusions

VQ is a widely used data compression technique. TSVQ plays an important role

among the various VQ methodologies. The existing methods such as single-path

TSVQ, multipath TSVQ and DP-TSVQ still have some drawbacks. Single-path

TSVQ provides poor image quality, while multipath TSVQ and DP-TSVQ waste too

much execution time attempting to improve the image quality to approach that of

FSVQ. This research has developed a novel full search equivalent TSVQ (FSE-

TSVQ), which stores a radius value for each internal node and employs the triangle

inequality to filter out many impossible codewords, so that the search space is

narrowed. FSE-TSVQ achieves image quality identical to that of FSVQ while

requiring only 21-38% of the computation time of FSVQ.

Furthermore, for the environments of low computational capability or a slight

reduction in image quality, this study proposes the hybrid method EDP-TSVQ, which

combines FSE-TSVQ and DP-TSVQ to obtain a better tradeoff between time and

quality than that of DP-TSVQ. In a low threshold requirement situation, the

performance of EDP-TSVQ and DP-TSVQ is almost equivalent. EDP-TSVQ is

always faster than DP-TSVQ when TH > 0.2. In addition, EDP-TSVQ and DP-TSVQ

produce the same image quality. Therefore, the EDP-TSVQ algorithm offers a better

time-quality tradeoff than DP-TSVQ.

21

References

 [1] A. Buzo, A. H. Gray, R. M. Gray, and J. D. Markel, “Speech coding based upon

vector quantization,” IEEE Trans. Acoustics, Speech, Signal Processing, Vol. 28,

No. 5, pp. 562-574, 1980.

 [2] C. C. Chang and T. S. Chen, “New tree-structured vector quantization with

closest-coupled multipath searching method,” Optical Engineering, Vol. 36, No.

6, pp. 1713-1720, 1997.

 [3] R. F. Chang, W. T. Chen, and J. S. Wang, “Image sequence coding using adaptive

tree-structured vector quantization with multipath searching,” IEE Proc. I, Vol.

139, No. 1, pp. 9-14, 1992.

 [4] C. C. Chang, J. S. Chou, and T. S. Chen, “An efficient computation of Euclidean

distances using approximated look-up table,” IEEE Trans. Circuits Systems

Video Technology, Vol. 10, No. 4, pp. 594-599, 2000.

 [5] C. C. Chang and I. C. Lin, “Novel full-search for speeding up image coding using

vector quantization,” Real-Time Imaging, Vol. 10, No. 2, pp. 95-102, 2004.

 [6] C. C. Chang and F. C. Shiue, “Tree structured vector quantization with dynamic

path search,” In Proc. Intl. Workshop Multimedia Network Systems (MMNS),

Aizu, Japan, pp. 536-541, Sep. 1999.

 [7] T. S. Chen and C. C. Chang, “Diagonal axes method (DAM): a fast search

algorithm for vector quantization,” IEEE Trans. Circuits Systems Video

Technique, Vol. 7, No. 3, pp.555-559, 1997.

 [8] A. Gersho and R. M. Gray, “Vector quantization and signal compression,”

Kluwer Academic Publishers, 1992.

 [9] R. M. Gray and Y. Linde, “Vector quantizers and predictive quantizers for Gauss-

Markov sources,” IEEE Trans. Communications, Vol. 30, No. 2, pp. 381-389,

1982.

[10] C. M. Huang, Q. Bi, G. S. Stiles, and R. W. Harris, “Fast full search equivalent

encoding algorithms for image compression using vector quantization,” IEEE

Trans. Image Processing, Vol. 1, No. 3, pp. 413-416, 1992.

22

[11] I. Katsavounidis, C. C. J. Kuo, and Z. Zhang, “Fast tree-structured nearest

neighbor encoding for vector quantization,” IEEE Trans. Image Processing, Vol.

5, No. 2, pp. 398-404, 1996.

[12] C. H. Lee and L. H. Chen, “A fast search algorithm for vector quantization using

mean pyramids of codewords,” IEEE Trans. Communications, Vol. 43, No.

2/3/4, pp. 1697-1702, 1995.

[13] Z. M. Lu, S. C. Chu, and K. C. Huang, “Equal-average equal-variance equal-

norm nearest neighbor codeword search algorithm based on ordered hadamard

transform,” Intl. Jour. Innovative Computing, Information and Control, Vol. 1,

No. 1, pp. 35-41, 2005.

[14] J. Mielikainen, “A novel full-search vector quantization algorithm based on the

law of cosines,” IEEE Signal Processing Letters, Vol. 9, No. 6, pp. 175-176,

2002.

[15] D. Mukherjee and S. K. Mitra, “Successive refinement lattice vector

quantization,” IEEE Trans. Image Processing, Vol. 11, No. 12, pp. 1337-1348,

2002.

[16] N. M. Nasrabadi and R. A. King, “Image coding using vector quantization: a

review,” IEEE Trans. Communications, Vol. 36, No. 8, pp. 957-971, 1988.

[17] Z. Pan, K. Kotani, and T. Ohmi, “An improved fast encoding algorithm for

vector quantization using 2-pixel-merging sum pyramid data structure,” Pattern

Recognition Letters, Vol. 25, No. 4, pp. 459-468, 2004.

[18] J. S. Pan, Z. M. Lu, and S. H. Sun, “An efficient encoding algorithm for vector

quantization based on subvector technique,” IEEE Trans. Image Processing, Vol.

12, No. 3, pp. 265-270, 2003.

[19] S. A. Rizvi and N. M. Nasrabadi, “An efficient Euclidean distance computation

for vector quantization using a truncated look-up table,” IEEE Trans. Circuits

Systems Video Technology, Vol. 5, No. 4, pp. 370-371, 1995.

[20] B. C. Song and J. B. Ra, “A fast search algorithm for vector quantization using

L2-norm pyramid of codewords,” IEEE Trans. Image Processing, Vol. 11, No. 1,

pp. 10-15, 2002.

