

EFFICIENT ALGORITHMS FOR MINING SHARE-FREQUENT ITEMSETS

Yu-Chiang Li1 Jieh-Shan Yeh2 Chin-Chen Chang1, 3

1.Department of Computer Science and Information Engineering, National Chung Cheng University, Chiayi 621, Taiwan
2.Department of Computer Science and Information Management, Providence University, Taichung 433, Taiwan
3.Department of Information Engineering and Computer Science, Feng Chia University, Taichung 407, Taiwan

Email: lyc@cs.ccu.edu.tw, jsyeh@pu.edu.tw, ccc@cs.ccu.edu.tw

ABSTRACT: Itemset share has been proposed to
evaluate the significance of itemsets for mining
association rules in databases. The Fast Share Measure
(FSM) algorithm is one of the best algorithms to discover
all share-frequent itemsets efficiently. However, FSM is
fast only when dealing with small datasets. In this study,
we shall propose a revised version of FSM, called the
Enhanced FSM (EFSM) algorithm that speeds up the
share-frequent itemsets discovery process. In addition, we
shall also present two additional algorithms, SuFSM and
ShFSM, developed from EFSM. SuFSM and ShFSM
prune the candidates more efficiently than FSM and
therefore can improve the performance significantly.
Simulation results reveal that the proposed methods
perform significantly better than ZSP and FSM, and the
performance of ShFSM is the best.
Keywords: Data mining, Knowledge discovery,
Association rules, Share measure

1 INTRODUCTION

Recent developments in information science have caused
large scale data digitalization, swelling up digital
databases and data warehouses. As a result, mechanisms
to efficiently handle large quantities of chronological data
and to expeditiously extract useful knowledge based on
data are essential. Data mining techniques have been
developed to find a small set of precious nugget, hidden
but potentially valuable information, from reams of data.
Nowadays, data mining has become a significant field of
research [10].

Mining association rules is particularly useful for
discovering relationships among items from large
databases. Agrawal et al. first defined the mining problem,
and developed an Apriori algorithm to generate
significant association rules for retail organizations to
analyze bar code data [2, 3]. The discovery of frequent
itemsets notably controls the overall performance of the
mining association rule system. Up to the present time,
various algorithms have been proposed to rapidly
discover the frequent itemsets, including Apriori and
Apriori-like algorithms [2, 3, 7, 8] that follow, and
pattern-growth methods [1, 11] as well.

Given a database of sales transactions, data analysis
aims to discover all associations among items, such as
customers’ buying patterns. Shop managers can then
arrange the store layout and promote their goods
according to the buying patterns. Each product is called an
item. A group of items bought together in a transaction is

called an itemset. The support value of an itemset
measures the itemset’s importance in a transaction
database. An itemset is said to be frequent when the
occurrence count of the itemsets in the database is above a
minimum support requirement [2]. However, the support
measure does not consider the quantities of items bought
in a transaction; that is, each item is a binary variable
denoting whether an item was purchased. Therefore, the
support count method does not measure the profit or the
cost of an itemset. In 1997, Carter et al. presented a
share-confidence framework to provide valuable
information about numerical values associated with
transaction items and considered the difficulty of mining
characterized association rules from itemsets [9].
Recently, several share measure researches have been
proposed to efficiently extract share-frequent itemsets
with infrequent subsets [4, 5, 6, 12, 13, 14].

A share-frequent (SH-frequent) itemset usually
includes some infrequent subsets. Consequently, the
downward closure property cannot be applied to the
discovery of all share-frequent itemsets. Several
algorithms have been developed to discover
share-frequent itemsets. However, some fast algorithms
such as SIP, CAC and IAB [4, 5, 6] do not discover
complete share-frequent itemsets. Obviously, an
exhaustive search can generate all SH-frequents, but it is
way too time-consuming and is therefore not applicable in
a large dataset environment. Recently, Li et al. developed
a Fast Share Measure (FSM) algorithm to swiftly discover
all SH-frequent itemsets [14]. Although fast on a small
dataset, FSM still generates too many useless candidates
and is inefficient on a large dataset. To make a difference,
this work proposes an Enhanced FSM (EFSM) to improve
the performance of FSM. Moreover, to efficiently lower
the number of useless candidates and further accelerate
the mining process, especially in a large dataset, this study
has also developed two new algorithms respectively
called Support-counted FSM (SuFSM) and Share-counted
FSM (ShFSM). For simplicity and without loss of
generality, this study assumes that the measure value of
each item is a non-negative integer.

The rest of this paper is organized as follows. Section
2 reviews the support-confidence and the
share-confidence frameworks. Section 3 explains the
proposed Enhanced Fast Share Measure (EFSM)
algorithm, followed by the introduction of the proposed
Support-counted FSM (SuFSM) algorithm in Section 4
and the proposed Share-counted FSM (ShFSM) algorithm
in Section 5. Then, Section 6 provides experimental

1

mailto:lyc@cs.ccu.edu.tw
mailto:jsyeh@pu.edu.tw
mailto:ccc@cs.ccu.edu.tw

results and evaluates the performance of the proposed
algorithms. Finally, we summarize our work with Section
7.

2 REVIEW OF SUPPORT AND SHARE
MEASURES

2.1 Support-confidence framework

Agrawal et al. first introduced a model to define the
problem of mining association rules [2, 3]. Given a
transaction database, the mining of association rules is to
discover the interesting rules, in which some items often
appear at the same transactions. Let I={i , i , …, i } be a
set of literals, called items. A set of items X is called an
itemset, where

1 2 n

X I⊆ . Let DB={T1, T2, ..., Tz} be the
transaction database, where each transaction Tq satisfies
Tq∈DB, Tq⊆ I, 1 ≤ q z. Each transaction is assigned a
unique identifier TID so that it can easily be distinguish
from others. An itemset X is contained in T

≤

q if and only if
X T⊆ q. The form X Y presents an association rule,

where X I, Y⊆ I and X Y =

⇒

⊆ I φ (For example, I = {A, B,
C, D, E}, X = {A, C}, Y = {B, E}). The rule X Y
involves two characteristic values support and confidence.
If the itemset X Y appears in s% of transactions in DB,
the support of the rule X Y is s%, denoted as Sup(X Y).
If the set of transactions contains X in DB and it also has
c% transactions containing Y, the confidence of the rule
X Y is c%, denoted as Conf(X Y). Thus,
Conf(X Y)=Sup(X Y)/Sup(X). The idea of mining
association rules is to generate all rules whose support and
confidence exceed the pre-defined minimum support and
minimum confidence thresholds, respectively. An itemset,
whose support is not less than the minimum support
(minSup) threshold, is called a frequent itemset.

⇒

U

⇒ U

⇒ ⇒
⇒ U

Apriori prunes some infrequent itemsets,
subsequently violating the downward closure feature to
efficiently discover the frequent itemsets. The downward
closure property is characterized as follows. An arbitrary
subset of a frequent itemset is also a frequent itemset;
otherwise the itemset is infrequent.

2.2 Share-confidence framework

In 1997, Hilderman et al. first introduced the
share-confidence framework, which is an alternative
method to address the importance of itemsets [9]. Instead
of a binary attribute, each item ip involves a numerical
value of measure attribute in each transaction T . The term
mv(i

q

p, Tq) represents the measure attribute value of ip in a
transaction TTq, called the measure value. For example, in
Table 1, mv(D, T01) = 1 and mv(C, T03) = 3. The
numerical value can be an integer as in sales statistics, or a
real number as in profit or revenue accounts. The total
measure value of a transaction Tp is called the transaction
measure value, denoted as tmv(Tp), where tmv(Tp)
= . Let Tmv be the total of measure values

in DB, where Tmv =

∑
∈ qp Ti

qp Timv),(

∑ ∑
∈ ∈DBT Ti

qp
q qp

Timv),(. Similarly,

Tmv(db) denotes the total of measure values in db, where
db DB and Tmv(db) =⊆ ∑ ∑

∈ ∈dbT Ti
qp

q qp

Timv),(. The other

notations and their definitions are as follows [6, 14].
Definition 2.1 Each k-itemset X⊆ I has an associated set
of transactions db = {TX q∈DB | X⊆ T }. Therefore, db is
the set of transactions that contain itemset X.

q X

Definition 2.2 The measure value of an itemset X in a
transaction TTq is called the itemset measure value, denoted
as imv(X, Tq), where imv(X, Tq) = . ∑

∈⊆ XiTX
qp

pq

Timv
,

),(

Definition 2.3 The local measure value of an itemset X,
denoted as lmv(X), is the sum of the itemset measure
values in db . In other words, lmv(X) =

=

x ∑
∈ xq dbT

qTXimv),(

∑ ∑
∈ ∈⊆Xq pqdbT XiTX

qp Timv
,

),(.

Definition 2.4 The itemset share value of an itemset X,
denoted as SH(X), is the ratio of the local measure value of
X to the total measure value. That is, SH(X) =

Tmv
Xlmv)(.

Definition 2.5 A k-itemset X is share-frequent
(SH-frequent) if SH(X) is exceeds a pre-defined minimum
share threshold (minShare) s%.

Example 2.1 Consider the transaction database with eight
transactions as shown in Table 1 and minShare = 35%.
The column “Count” lists the corresponding measure
value of each item in a transaction. Table 2 lists the local
measure value and the share value of each 1-itemset,
where Tmv = 57. Let X = {B, C, D}, and the local measure
value of {B, C, D} is lmv(X) = imv(X, T01) + imv(X, T03)
+ imv(X, T06) + imv(X, T07) = 3 + 10 + 6 + 8 = 27. SH(X)
= lmv(X)/Tmv = 27/57 = 0.474 > 35%. Therefore, {B, C,
D} is an SH-frequent itemset. Table 3 enumerates all
SH-frequent itemsets.

Table 1: Example of a transaction database with counting
TID Transaction Count
T01 {A, B, C, D, E, G, H} {1, 1, 1, 1, 1, 1, 1}
T02 {F, H} {4, 3}
T03 {B, C, D} {4, 3, 3}
T04 {C, E} {4, 1}
T05 {B, D} {3, 2}
T06 {B, C, D} {3, 2, 1}
T07 {B, C, D, E} {3, 4, 1, 2}
T08 {A, F, G} {4, 2, 1}

Table 2: Local measure value and itemset share value of
each 1-itemset

Item A B C D E F G H
lmv(ip) 5 14 14 8 4 6 2 4
SH(ip) 8.8% 24.6% 24.6% 14% 7% 10.5% 3.5% 7%

Table 3: All SH-frequent itemsets of the sample database
SH-frequent itemset BC BD BCD

lmv(X) 21 22 27
SH(X) 36.8% 38.6% 47.4%

2

2.3 Fast share measure (FSM) algorithm

For the support measure, Apriori-like algorithms employ
the downward closure property to reduce the number of
candidates and speed up the mining process efficiently.
However, some, or even all, of the subsets in an
SH-frequent itemset could be infrequent. In other words,
the characteristic of downward closure does not work on
share measure. Obviously, the exhaustive search method
can find all SH-frequent itemsets, but the running time is
exponential. The ZSP algorithm, a variant of exhaustive
search, only prunes the candidate itemsets whose local
measure values are exactly zero [6]. Therefore, in our
previous work, we first proposed a non-exhaustive search
method called Fast Share Measure (FSM) to discover all
SH-frequent itemsets efficiently [14]. Instead of the
downward closure property, FSM takes advantage of the
level closure property to rapidly decrease the number of
candidates. Suppose we have min_lmv = minShare× Tmv.
The level closure goes as follows. Given a minShare and a
candidate k-itemset X, if lmv(X) +
(lmv(X)/k) MV× Level < min_lmv, no superset of X with
length k + Level is SH-frequent, where MV is the
maximum measure value of all. The left hand side of the
inequality is called the critical function CF(X). Set Level =
ML – k, t

×
≤

he level closure property’s inequality guarantees
that no superset of SH-infrequent itemset X is
SH-frequent if CF(X) < min_lmv, where ML is the
maximum length among all transactions.

FSM is also a level-wise, multiple passes algorithm.
In each pass, FSM scans the entire database to count the
local measure value of each itemset. Each candidate
itemset X is pruned when CF(X) < min_lmv. After the
(k-1)-th pass, some candidates of Ck-1 are pruned, and the
remained candidate set is called RCk-1. In the k-th pass,
FSM joins two arbitrary RCk-1 candidates, whose first k-2
items are identical. The k subsets with the length of (k - 1)
of each candidate k-itemset are all in RCk-1; otherwise, the
k-itemset has no SH-frequent superset and can be pruned.
After Ck is produced, RCk-1 is deleted. Next, FSM scans
the database to detect the SH-frequent itemsets. If no
candidates can be generated, then the process is
terminated. The performance of FSM overcomes ZSP two
or three orders of magnitude [14].

3 ENHANCED FAST SHARE MEASURE (EFSM)
ALGORITHM

In ZSP or FSM, the generation of C requires determining
whether two arbitrary k-itemsets in RC can be joined.
The first k-2 items of two arbitrary (k-1)-itemsets in RC
must be compared. Therefore, the time complexity of C
generation is O(n), where n is the number of distinct
items. The time complexity is the

k

k-1

k-1

k
2k-2

quadratic of the number
of RCk-1 elements. However, the number of generated
candidates is usually less than the number of
combinations of arbitrary pairs of itemsets by several
orders of magnitude. The process wastes too much
computation time to execute the joining procedure. To
reduce the time complexity of candidate generation, this
study proposes the Enhanced FSM (EFSM) algorithm to

discover SH-frequent itemsets rapidly.
When discovering long SH-frequent itemsets, the

number of candidate itemsets C increases quickly even
when the number of distinct items is small. The
Apriori-gen function [2] is time-consuming when there
are many RC candidates. Therefore, instead of joining
arbitrary two itemsets in RC , EFSM joins arbitrary
itemset of RC with a single item in RC to generate C
efficiently. Let candidate (k-1)-itemset X be {i , i …, i }
in the order of literals. Let the candidate 1-itemset X be
i

k

k-1

k-1

k-1 1 k

p 1 2 k-1

q

q∈I. If i < i , then X = {i , i …, i , i } is a candidate
k-itemset. Next, in the prune step, the procedure deletes
all itemsets X

k-1 q 1 2 k-1 q

∈Ck in which at least one (k-1)-subset of X
is not in RC . The pseudo-codes of the Join and Prune
functions are as follows.

k

function Join(RCk-1, RC1)
1. Ck:=φ ;
2. foreach Xp={i1, i2, …,ik-1}∈RCk-1 {
3. foreach iq ∈RC1 {
4. if (i >i) { q k-1
5. X=Xp∪ i ; q
6. C =C +X; } } } k k

function Prune(Ck)
1. foreach X∈Ck {
2. if there is a (k-1)-subset of X∉RC { k-1

3. C =C -X; } k k }

EFSM joins an arbitrary 1-itemset of RC with each
(k-1)-itemset of RC when i < i . Therefore, the time
complexity of the join step is reduced to O(n).
Furthermore, EFSM and FSM generate the identical set of
candidate k-itemsets. EFSM does not require other extra
computation overhead to reduce the time complexity of
the join step. The strategy also can be applied to the ZSP
algorithm to improve its performance. The improved ZSP
algorithm is called the Enhanced ZSP (EZSP) algorithm.

1

k-1 k-1 q
k

4 SUPPORT-COUNTED FAST SHARE
MEASURE (SuFSM) ALGORITHM

Although EFSM reduces the time complexity of the join
step, it does not reduce the number of candidates, which
always limits the performance of discovering
share-frequent itemsets. FSM employs the level closure
property and has an inequality to limit candidate
generation. To further reduce the number of RC
candidates and improve the performance, this study also
proposes the S

k

upport-counted FSM (SuFSM) and
Share-counted FSM (ShFSM) algorithms (ShFSM is
presented in Section 5). The performance of EFSM is
significantly better than that of FSM, which has been
demonostrates by our experiments (see Section 6 later).
Therefore, the development of SuFSM and ShFSM is
based on the EFSM algorithm.

Definition 4.1 Given a k-itemset X and a database DB, an
arbitrary superset of X with length k + 1 in T is denoted as
X , where X ⊆ T

q
k+1 k+1

q∈DB. For example, in Table 1, Let X

3

= {F}, X = {AF}, {FG}, or {FH}. k+1

Definition 4.2 Given a k-itemset X and a database DB, the
set which contains all (k+1)-supersets of X in DB is
denoted as S(X), where X S(X). For example
Table 1, Let X = {F}, S(X) = {{A, F}, {F, G}, {F, H}}.

k+1 k+1∈ k+1

k+1

Definition 4.3 Given a DB and a k-itemset X, the set of
transactions of which each transaction contains at least
one X is denoted as db k+1 . Therefore, the support
value of S(X) denoted as Sup(S(X)) is equal to
|db k+1 |. For example, in Table 1, Let X = {F},
Sup(S(X)) = 2. Let X = {FH}, Sup(S(X)) = 0.

k+1
S(X)

k+1 k+1

S(X)
k+1 k+1

Let maxSup(X) denote thek+1 maximum spport value
among all Sup(X) in DB. Let X be a candidate k-itemset.
FSM and EFSM obtain the upper bound of the maximum
distribution number, lmv(X)/k, of transactions, containing
the arbitrary superset of X. According to the bound value,
the MV value and the ML value, FSM can determine
whether X has any superset that could be an SH-frequent
itemset. However, the value lmv(X)/k is not tight to the
maxSup(X). The following equation holds.

k+1

k+1

lmv(X)/k Sup(X) Sup(S(X≥ ≥ k+1))≥maxSup(Xk+1). (1)

If no superset of X is an SH-frequent itemset, then the
following four equations hold.

lmv(X) + (lmv(X)/k)×MV× (ML - k) < min_lmv, (2)

lmv(X)+Sup(X)×MV× (ML - k) < min_lmv, (3)

lmv(X)+Sup(S(Xk+1))×MV× (ML - k)<min_lmv,
and

(4)

lmv(X)+maxSup(Xk+1)×MV× (ML - k) < min_lmv. (5)

The left hand side of each of the four equations is
called a critical function CF(X) of the itemset X. Equation
5 can be used to prune the most useless candidates among
the four equations, but wastes much memory space to
count the support value so as to obtain the value of
maxSup(Xk+1). The number of combinations of all
(k+1)-supersets reaches O(n2k-2), where n is the number of
distinct items. By contrast to obtaining the value of
Sup(S(Xk+1)), the cost of finding the value of maxSup(Xk+1)
is too high. Calculating the value of Sup(S(Xk+1)) only
requires a variable to accumulate the support value for
each candidate itemset when DB is scanned. Therefore,
Support-counted FSM (SuFSM) modifies the inequality
Eq. 2 used in FSM to Eq. 4. SuFSM employs the support
value as a parameter to prune more candidates than FSM
and EFSM do.

5 SHARE-COUNTED FAST SHARE MEASURE
(ShFSM) ALGORITHM

SuFSM calculates the value of Sup(S(Xk+1)) for each
candidate in Ck being applied to determine RCk. For
EFSM and SuFSM, a lower critical function value
generates a smaller set RCk. Although the two parameters
MV and (ML - k) limit the upper bound of the CF(X) value,
they relax the real upper bound. Therefore, this section

presents the Share-counted FSM (ShFSM) algorithm to
compact the interval between the critical function value
and the maximum local measure value of Xk+1. Let X be a
k-itemset, which is a subset of (k+1)-itemset Xk+1 in DB.
Other notations and characteristics of ShFSM are as
follows.

Definition 5.1 Given a DB, let X and X’ be two itemsets,
where X ⊆ X’. The local measure value of X on X’,
denoted as lmv(X, X’), is the sum of the itemset measure
values in dbx’. In other words, lmv(X, X’) =
∑
∈ '

),(X
xq dbT

qTimv . If X = X’, then lmv(X, X’) = lmv(X).

Lemma 5.1 Let X, X’ and X’’ be three itemsets, X
X’ X’’, then

⊆
⊆

(1) lmv(X, X’’) ≤ lmv(X’, X’’), especially when X’ =
X’’, lmv(X, X’) ≤ lmv(X’).

(2) lmv(X, X’) lmv(X, X’’), especially when X = X’,
lmv(X) lmv(X, X’’).

≥
≥

Proof. The proof of this lemma may be found in [14].

Theorem 5.1 Given a DB and a k-itemset X, we have
lmv(X) + Sup(S(Xk+1))×MV× (ML - k)≥ Tmv(dbS(Xk+1)).
Proof. Let (k+1)-superset of X be Xk+1⊆ Tp. By Lemma
5.1, lmv(X)≥ lmv(X, Xk+1). So,

lmv(X) + Sup(S(Xk+1))×MV× (ML-k)
≥ lmv(X, Xk+1) + Sup(S(Xk+1)) MV (ML-k).× × (6)

For each transaction Tq∈DB, since MV (ML - k)
tmv(T

× ≥
q) – imv(X, Tq), Sup(S(Xk+1)) MV (ML - k) × × ≥

∑
+∈

)1(

)(
kXSq dbT

qTtmv – ∑
+∈

)1(

),(
kXSq dbT

qTXimv in dbS(Xk+1). So,

Sup(S(Xk+1))×MV× (ML - k)
≥ Tmv(dbS(Xk+1))-lmv(X, Xk+1). (7)

By Eqs. 6 and 7, we have

lmv(X)+Sup(S(Xk+1))×MV× (ML-k) ≥ Tmv(dbS(Xk+1)).
Q.E.D

Theorem 5.2 Given a minShare, if Tmv(dbS(Xk+1)) <
min_lmv, all supersets of X are infrequent.
Proof. For arbitrary superset X’ of X with length k + i,
where 0 < i ≤ (ML - k), since dbX’⊆ dbS(Xk+1), Tmv(dbX’)
≤ Tmv(dbS(Xk+1)). In a DB, lmv(X’) Tmv(db≤ X’). So, if
the inequality Tmv(dbS(Xk+1)) < min_lmv holds, lmv(X’) <
min_lmv = minShare× Tmv. That is, SH(X’) = lmv(X’) /
Tmv < minShare. X’ is infrequent. Q.E.D

Theorem 5.2 guarantees that if Tmv(dbS(Xk+1)) <
minShare× Tmv, no superset of X is SH-frequent in DB.
The characteristic can be applied to prune candidates
whose supersets are not SH-frequent. The ShFSM
algorithm based on EFSM is a level-wise, multiple passes
algorithm. Among the three algorithms, EFSM, SuFSM
and ShFSM, ShFSM obtains the smallest critical function
value for a candidate itemset X. Therefore, ShFSM can
prune more candidates than SuFSM and EFSM.

4

6 EXPERIMENTAL RESULTS

The performance of the proposed algorithms was
compared with that of ZSP and FSM using a 1.5 GHz
Pentium IV PC with 1.5 GB of main memory, running
Windows XP Professional. All algorithms were coded in
Visual C++ 6.0, and applied to several synthetic datasets.
Each algorithm employed the trie structure to count the
local measure value. The complete SH-frequent itemsets
were outputted to main memory to avoid disk writing.

This study uses the IBM synthetic data generator [15]
to generate several synthetic datasets. The VC++ version
of the data generator was obtained from [16]. To simulate
the characteristic of the measure value in each item which
appears in each transaction, the measure value was
randomly generated between 1 and m, with 50% of
measure value set as 1. Table 4 summarizes the
parameters used in these experiments. The notation
Tx.Iy.Dz.Nn.Sm denotes a dataset with given parameters x,
y, z, n and m.

Table 4. Parameters
x Mean size of the transactions
y Mean size of potentially frequent itemsets
z Number of transactions in DB
n Number of items
m Maximum measure value

Figures 1, 2 and 3 plot the performance curves of
running time with the six algorithms applied to
T4.I2.D100k.N50.S10, T6.I4.D100k.N200.S10 and
T10.I6.D100k.N500.S20, respectively. The main memory
was not enough to run ZSP and EZSP using the last two
datasets. As Fig. 3 shows, FSM and EFSM generated too
many candidates to run in main memory when
minShare ≤ 0.4%. The x-axis represents several distinct
minShare thresholds between 0.1% and 1.2%, and the
y-axis stands for the running time. The three figures use a
logarithmic scale for the y-axis. Figure 2 demonstrates
that EZSP performed better than ZSP by more than two
orders of magnitude. EFSM always significantly
outperforms FSM. The three figures show that ShFSM
had the best performance, followed by SuFSM. For
example, as indicated in Fig. 3, ShFSM’s running time
was only 13%, 2% and 0.03% of those of SuFSM, EFSM
and FSM, respectively, when minShare = 0.6%.

Table 5 presents the numbers of Ck and RCk in each
pass using the dataset T6.I4.D100k.N200.S10 when
minShare = 0.1%. ShFSM generated the fewest
candidates among the four algorithms. ShFSM terminated
the process at pass 10 and performed best in that aspect,
while the others went up to pass 13. FSM and EFSM
produced the identical Ck and RCk sets. EFSM
significantly reduced the time complexity of the join step.
Therefore, EFSM is faster than FSM. All the four
algorithms can discover all SH-frequent itemsets even
when no (k-1)-subset is SH-frequent. For example, in the
pass 5, the five SH-frequent 5-itemsets have no
SH-frequent 4-subset.

T4.I2.D100k.N50.S10

1

10

100

1000

10000

100000

0 0.2 0.4 0.6 0.8 1 1.2
minShare (%)

R
un

ni
ng

 ti
m

e
(s

ec

ZSP
EZSP
FSM
EFSM
SuFSM
ShFSM

Figure 1: Running time comparison

T6.I4.D100k.N200.S10

1

10

100

1000

10000

100000

0 0.2 0.4 0.6 0.8 1 1.2
minShare (%)

R
un

ni
ng

 ti
m

e
(s

ec

FSM
EFSM
SuFSM
ShFSM

Figure 2: Running time comparison

T10.I6.D100k.N500.S20

1

10

100

1000

10000

100000

0 0.2 0.4 0.6 0.8 1 1.2
minShare (%)

R
un

ni
ng

 ti
m

e
(s

ec
)
FSM
EFSM
SuFSM
ShFSM

Figure 3: Running time comparison

Table 5: Comparison on the number of candidates in each
pass using T6.I4.D100k.N200.S10 (ML=20)

Method
Pass (k) FSM EFSM SuFSM ShFSM Fk

Ck 200 200 200 200k=1 RCk 200 200 199 197 159

Ck 19900 19900 19701 19306k=2 RCk 16214 16214 13312 7199 1844

Ck 829547 829547 564324 190607k=3 RCk 251877 251877 99765 9792 101

Ck 3290296 3290296 793042 20913k=4 RCk 332877 332877 41057 1420 0

Ck 393833 393833 25003 1050k=5 RCk 71420 71420 19720 959 5

Ck 26137 26137 11582 518k=6 RCk 25562 25562 11045 506 8

Ck 11141 11141 5940 204k=7 RCk 11099 11099 5827 196 7

Ck 4426 4426 2797 58k=8 RCk 4423 4423 2750 54 1

Ck 2036 2036 1567 12k 9≥ RCk 2030 2030 1513 10 0

Time(sec) 13610.4 71.55 29.67 10.95

Figure 4 presents the scalability with the transaction
number of DB using T6.I4.Dz.N200.S10, where minShare
= 0.3%. The x-axis represents several distinct DB sizes

5

between 100k and 1000k, and the y-axis represents the
running time. Figure 4 uses a logarithmic scale for the
y-axis. The running times of EFSM, SuFSM and ShFSM
linearly increased with the growth of the DB size. The
running time of FSM only increased by 50% from
|DB|=100k to |DB|=1000k, because the join step
dominated the performance of FSM. The size of DB
dominated the running times of EFSM, SuFSM and
ShFSM.

T6.I4.Dz.N200.S10

1

10

100

1000

10000

0 200 400 600 800 1000

Transactions (k)

R
un

ni
ng

 ti
m

e
(s

ec
)

FSM
EFSM

SuFSM
ShFSM

Figure 4: Scalability with the transaction number of DB,

7 CONCLUSIONS

The value of the itemset share can provide useful
information, such as the total profit or total sales of an
itemset in the database. Therefore, itemset share can
overcome the drawbacks of the support measure. The
development of an efficient way to discover complete
SH-frequent itemsets is an important solution to various
mining problems. However, the downward closure
property fails to discover all share-frequent itemsets. To
solve such problem and develop an efficient method for
rapidly generating all SH-frequent itemsets, in this study,
we have proposed the Enhanced FSM (EFSM) algorithm
to efficiently reduce the time complexity of the join step.
In addition, we have also developed SuFSM and ShFSM
from EFSM. SuFSM and ShFSM can efficiently prune the
candidates, and significantly improve the performance.
The experimental results have indicated that ShFSM has
the best performance. In the future, the authors plan to
develop even more advanced algorithms to accelerate the
process of identifying all SH-frequent itemsets.

REFERENCES

[1] R. C. Agarwal, C. C. Aggarwal, and V. V. V. Prasad
(2001) “A tree projection algorithm for generation of
frequent itemsets”, Journal of Parallel and Distributed
Computing, 61:350-361.

[2] R. Agrawal, T. Imielinski, and A. Swami (1993)
“Mining association rules between sets of items in
large databases”, in Proc. 1993 ACM SIGMOD Intl.
Conf. on Management of Data, Washington, D.C.,
207-216.

[3] R. Agrawal and R. Srikant (1994) “Fast algorithms for
mining association rules”, in Proc. 20th Intl. Conf. on
Very Large Data Bases, Santiago, Chile, 487-499.

[4] B. Barber and H. J. Hamilton (2000) “Algorithms for
mining share frequent itemsets containing infrequent
subsets”, Lecture Notes in Computer Sciences,
Springer-Verlag, Germany, 1910:316-324.

[5] B. Barber and H. J. Hamilton (2001) “Parametric
algorithm for mining share frequent itemsets”,
Journal of Intelligent Information Systems,
16:277-293.

[6] B. Barber and H. J. Hamilton (2003) “Extracting share
frequent itemsets with infrequent subsets”, Data
Mining and Knowledge Discovery, 7:153-185.

[7] S. Brin, R. Motwani, J. D. Ullman, and S. Tsur (1997)
“Dynamic itemset counting and implication rules for
market basket data”, in Proc. 1997 ACM SIGMOD
Intl. Conf. on Management of Data, Tucson, AZ,
255-264.

[8] F. Berzal, J. C. Cubero, N. Marín, and J. M. Serrano
(2001) “TBAR: An efficient method for association
rule mining in relational databases”, Data &
Knowledge Engineering, 37:47-64.

[9] C. L. Carter, H. J. Hamilton, and N. Cercone (1997)
“Share based measures for itemsets”, Lecture Notes
in Computer Science, Springer-Verlag, Germany,
1263:14-24.

[10] M. S. Chen, J. Han, and P. S. Yu (1996) “Data
mining: An overview from a database perspective”,
IEEE Trans. Knowledge Data Engineering,
8:866-883.

[11] J. Han, J. Pei, Y. Yin, and R. Mao (2004) “Mining
frequent pattern without candidate generation: A
frequent pattern tree approach”, Data Mining and
Knowledge Discovery, 8:53-87.

[12] R. J. Hilderman (2003) “Predicting itemset sales
profiles with share measures and repeat-buying
theory”, Lecture Notes in Computer Science,
Springer-Verlag, Germany, 2690:789-795.

[13] R. J. Hilderman, C. L. Carter, H. J. Hamilton, and N.
Cercone (1998) “Mining association rules from
market basket data using share measures and
characterized itemsets”, Intl. Journal of Artificial
Intelligence Tools, 7:189-220.

[14] Y. C. Li, J. S. Yeh, and C. C. Chang (2005) “A fast
algorithm for mining share-frequent itemsets”,
Lecture Notes in Computer Science, Springer-Verlag,
Germany, 3399:417-428.

[15]
http://alme1.almaden.ibm.com/software/quest/Resou
rces/datasets/syndata.html

[16]
http://www.cse.cuhk.edu.hk/~kdd/data/IBM_VC++.
zip

6

