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ABSTRACT: Itemset share has been proposed to 
evaluate the significance of itemsets for mining 
association rules in databases. The Fast Share Measure 
(FSM) algorithm is one of the best algorithms to discover 
all share-frequent itemsets efficiently. However, FSM is 
fast only when dealing with small datasets. In this study, 
we shall propose a revised version of FSM, called the 
Enhanced FSM (EFSM) algorithm that speeds up the 
share-frequent itemsets discovery process. In addition, we 
shall also present two additional algorithms, SuFSM and 
ShFSM, developed from EFSM. SuFSM and ShFSM 
prune the candidates more efficiently than FSM and 
therefore can improve the performance significantly. 
Simulation results reveal that the proposed methods 
perform significantly better than ZSP and FSM, and the 
performance of ShFSM is the best.  
Keywords: Data mining, Knowledge discovery, 
Association rules, Share measure 

1 INTRODUCTION 

Recent developments in information science have caused 
large scale data digitalization, swelling up digital 
databases and data warehouses. As a result, mechanisms 
to efficiently handle large quantities of chronological data 
and to expeditiously extract useful knowledge based on 
data are essential. Data mining techniques have been 
developed to find a small set of precious nugget, hidden 
but potentially valuable information, from reams of data. 
Nowadays, data mining has become a significant field of 
research [10].  

Mining association rules is particularly useful for 
discovering relationships among items from large 
databases. Agrawal et al. first defined the mining problem, 
and developed an Apriori algorithm to generate 
significant association rules for retail organizations to 
analyze bar code data [2, 3]. The discovery of frequent 
itemsets notably controls the overall performance of the 
mining association rule system. Up to the present time, 
various algorithms have been proposed to rapidly 
discover the frequent itemsets, including Apriori and 
Apriori-like algorithms [2, 3, 7, 8] that follow, and 
pattern-growth methods [1, 11] as well.  

Given a database of sales transactions, data analysis 
aims to discover all associations among items, such as 
customers’ buying patterns. Shop managers can then 
arrange the store layout and promote their goods 
according to the buying patterns. Each product is called an 
item. A group of items bought together in a transaction is 

called an itemset. The support value of an itemset 
measures the itemset’s importance in a transaction 
database. An itemset is said to be frequent when the 
occurrence count of the itemsets in the database is above a 
minimum support requirement [2]. However, the support 
measure does not consider the quantities of items bought 
in a transaction; that is, each item is a binary variable 
denoting whether an item was purchased. Therefore, the 
support count method does not measure the profit or the 
cost of an itemset. In 1997, Carter et al. presented a 
share-confidence framework to provide valuable 
information about numerical values associated with 
transaction items and considered the difficulty of mining 
characterized association rules from itemsets [9]. 
Recently, several share measure researches have been 
proposed to efficiently extract share-frequent itemsets 
with infrequent subsets [4, 5, 6, 12, 13, 14].  

A share-frequent (SH-frequent) itemset usually 
includes some infrequent subsets. Consequently, the 
downward closure property cannot be applied to the 
discovery of all share-frequent itemsets. Several 
algorithms have been developed to discover 
share-frequent itemsets. However, some fast algorithms 
such as SIP, CAC and IAB [4, 5, 6] do not discover 
complete share-frequent itemsets. Obviously, an 
exhaustive search can generate all SH-frequents, but it is 
way too time-consuming and is therefore not applicable in 
a large dataset environment. Recently, Li et al. developed 
a Fast Share Measure (FSM) algorithm to swiftly discover 
all SH-frequent itemsets [14]. Although fast on a small 
dataset, FSM still generates too many useless candidates 
and is inefficient on a large dataset. To make a difference, 
this work proposes an Enhanced FSM (EFSM) to improve 
the performance of FSM. Moreover, to efficiently lower 
the number of useless candidates and further accelerate 
the mining process, especially in a large dataset, this study 
has also developed two new algorithms respectively 
called Support-counted FSM (SuFSM) and Share-counted 
FSM (ShFSM). For simplicity and without loss of 
generality, this study assumes that the measure value of 
each item is a non-negative integer.  

The rest of this paper is organized as follows. Section 
2 reviews the support-confidence and the 
share-confidence frameworks. Section 3 explains the 
proposed Enhanced Fast Share Measure (EFSM) 
algorithm, followed by the introduction of the proposed 
Support-counted FSM (SuFSM) algorithm in Section 4 
and the proposed Share-counted FSM (ShFSM) algorithm 
in Section 5. Then, Section 6 provides experimental 
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results and evaluates the performance of the proposed 
algorithms. Finally, we summarize our work with Section 
7. 

2 REVIEW OF SUPPORT AND SHARE 
MEASURES 

2.1 Support-confidence framework 

Agrawal et al. first introduced a model to define the 
problem of mining association rules [2, 3]. Given a 
transaction database, the mining of association rules is to 
discover the interesting rules, in which some items often 
appear at the same transactions. Let I={i , i , …, i } be a 
set of literals, called items. A set of items X is called an 
itemset, where 

1 2 n

X I⊆ . Let DB={T1, T2, ..., Tz} be the 
transaction database, where each transaction Tq satisfies 
Tq∈DB, Tq⊆ I, 1 ≤ q z. Each transaction is assigned a 
unique identifier TID so that it can easily be distinguish 
from others. An itemset X is contained in T

≤

q if and only if 
X T⊆ q. The form X Y presents an association rule, 

where X I, Y⊆ I and X Y = 

⇒

⊆ I φ  (For example, I = {A, B, 
C, D, E}, X = {A, C}, Y = {B, E}). The rule X Y 
involves two characteristic values support and confidence. 
If the itemset X Y appears in s% of transactions in DB, 
the support of the rule X Y is s%, denoted as Sup(X Y). 
If the set of transactions contains X in DB and it also has 
c% transactions containing Y, the confidence of the rule 
X Y is c%, denoted as Conf(X Y). Thus, 
Conf(X Y)=Sup(X Y)/Sup(X). The idea of mining 
association rules is to generate all rules whose support and 
confidence exceed the pre-defined minimum support and 
minimum confidence thresholds, respectively. An itemset, 
whose support is not less than the minimum support 
(minSup) threshold, is called a frequent itemset. 

⇒

U

⇒ U

⇒ ⇒
⇒ U

Apriori prunes some infrequent itemsets, 
subsequently violating the downward closure feature to 
efficiently discover the frequent itemsets. The downward 
closure property is characterized as follows. An arbitrary 
subset of a frequent itemset is also a frequent itemset; 
otherwise the itemset is infrequent.  

2.2 Share-confidence framework 

In 1997, Hilderman et al. first introduced the 
share-confidence framework, which is an alternative 
method to address the importance of itemsets [9]. Instead 
of a binary attribute, each item ip involves a numerical 
value of measure attribute in each transaction T . The term 
mv(i

q

p, Tq) represents the measure attribute value of ip in a 
transaction TTq, called the measure value. For example, in 
Table 1, mv(D, T01) = 1 and mv(C, T03) = 3. The 
numerical value can be an integer as in sales statistics, or a 
real number as in profit or revenue accounts. The total 
measure value of a transaction Tp is called the transaction 
measure value, denoted as tmv(Tp), where tmv(Tp) 
= . Let Tmv be the total of measure values 

in DB, where Tmv =

∑
∈ qp Ti

qp Timv ),(

∑ ∑
∈ ∈DBT Ti

qp
q qp

Timv ),( . Similarly, 

Tmv(db) denotes the total of measure values in db, where 
db DB and Tmv(db) =⊆ ∑ ∑

∈ ∈dbT Ti
qp

q qp

Timv ),( . The other 

notations and their definitions are as follows [6, 14].  
Definition 2.1 Each k-itemset X⊆ I has an associated set 
of transactions db  = {TX q∈DB | X⊆ T }. Therefore, db  is 
the set of transactions that contain itemset X. 

q X

Definition 2.2 The measure value of an itemset X in a 
transaction TTq is called the itemset measure value, denoted 
as imv(X, Tq), where imv(X, Tq) = . ∑

∈⊆ XiTX
qp

pq

Timv
,

),(

Definition 2.3 The local measure value of an itemset X, 
denoted as lmv(X), is the sum of the itemset measure 
values in db . In other words, lmv(X) =  

=

x ∑
∈ xq dbT

qTXimv ),(

∑ ∑
∈ ∈⊆Xq pqdbT XiTX

qp Timv
,

),( . 

Definition 2.4 The itemset share value of an itemset X, 
denoted as SH(X), is the ratio of the local measure value of 
X to the total measure value. That is, SH(X) =

Tmv
Xlmv )( .  

Definition 2.5 A k-itemset X is share-frequent 
(SH-frequent) if SH(X) is exceeds a pre-defined minimum 
share threshold (minShare) s%.  

Example 2.1 Consider the transaction database with eight 
transactions as shown in Table 1 and minShare = 35%. 
The column “Count” lists the corresponding measure 
value of each item in a transaction. Table 2 lists the local 
measure value and the share value of each 1-itemset, 
where Tmv = 57. Let X = {B, C, D}, and the local measure 
value of {B, C, D} is lmv(X) = imv(X, T01) + imv(X, T03) 
+ imv(X, T06) + imv(X, T07) = 3 + 10 + 6 + 8 = 27. SH(X) 
= lmv(X)/Tmv = 27/57 = 0.474 > 35%. Therefore, {B, C, 
D} is an SH-frequent itemset. Table 3 enumerates all 
SH-frequent itemsets.  

Table 1: Example of a transaction database with counting
TID Transaction Count 
T01 {A, B, C, D, E, G, H} {1, 1, 1, 1, 1, 1, 1}
T02 {F, H} {4, 3} 
T03 {B, C, D} {4, 3, 3} 
T04 {C, E} {4, 1} 
T05 {B, D} {3, 2} 
T06 {B, C, D} {3, 2, 1} 
T07 {B, C, D, E} {3, 4, 1, 2} 
T08 {A, F, G} {4, 2, 1} 

Table 2: Local measure value and itemset share value of 
each 1-itemset 

Item A B C D E F G H
lmv(ip) 5 14 14 8 4 6 2 4
SH(ip) 8.8% 24.6% 24.6% 14% 7% 10.5% 3.5% 7%

Table 3: All SH-frequent itemsets of the sample database 
SH-frequent itemset BC BD BCD

lmv(X) 21 22 27 
SH(X) 36.8% 38.6% 47.4%
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2.3 Fast share measure (FSM) algorithm 

For the support measure, Apriori-like algorithms employ 
the downward closure property to reduce the number of 
candidates and speed up the mining process efficiently. 
However, some, or even all, of the subsets in an 
SH-frequent itemset could be infrequent. In other words, 
the characteristic of downward closure does not work on 
share measure. Obviously, the exhaustive search method 
can find all SH-frequent itemsets, but the running time is 
exponential. The ZSP algorithm, a variant of exhaustive 
search, only prunes the candidate itemsets whose local 
measure values are exactly zero [6]. Therefore, in our 
previous work, we first proposed a non-exhaustive search 
method called Fast Share Measure (FSM) to discover all 
SH-frequent itemsets efficiently [14]. Instead of the 
downward closure property, FSM takes advantage of the 
level closure property to rapidly decrease the number of 
candidates. Suppose we have min_lmv = minShare× Tmv. 
The level closure goes as follows. Given a minShare and a 
candidate k-itemset X, if lmv(X) + 
(lmv(X)/k) MV× Level < min_lmv, no superset of X with 
length k + Level is SH-frequent, where MV is the 
maximum measure value of all. The left hand side of the 
inequality is called the critical function CF(X). Set Level = 
ML – k, t

×
≤

he level closure property’s inequality guarantees 
that no superset of SH-infrequent itemset X is 
SH-frequent if CF(X) < min_lmv, where ML is the 
maximum length among all transactions.  

FSM is also a level-wise, multiple passes algorithm. 
In each pass, FSM scans the entire database to count the 
local measure value of each itemset. Each candidate 
itemset X is pruned when CF(X) < min_lmv. After the 
(k-1)-th pass, some candidates of Ck-1 are pruned, and the 
remained candidate set is called RCk-1. In the k-th pass, 
FSM joins two arbitrary RCk-1 candidates, whose first k-2 
items are identical. The k subsets with the length of (k - 1) 
of each candidate k-itemset are all in RCk-1; otherwise, the 
k-itemset has no SH-frequent superset and can be pruned. 
After Ck is produced, RCk-1 is deleted. Next, FSM scans 
the database to detect the SH-frequent itemsets. If no 
candidates can be generated, then the process is 
terminated. The performance of FSM overcomes ZSP two 
or three orders of magnitude [14].  

3 ENHANCED FAST SHARE MEASURE (EFSM) 
ALGORITHM 

In ZSP or FSM, the generation of C  requires determining 
whether two arbitrary k-itemsets in RC  can be joined. 
The first k-2 items of two arbitrary (k-1)-itemsets in RC  
must be compared. Therefore, the time complexity of C  
generation is O(n ), where n is the number of distinct 
items. The time complexity is the 

k

k-1

k-1

k
2k-2

quadratic of the number 
of RCk-1 elements. However, the number of generated 
candidates is usually less than the number of 
combinations of arbitrary pairs of itemsets by several 
orders of magnitude. The process wastes too much 
computation time to execute the joining procedure. To 
reduce the time complexity of candidate generation, this 
study proposes the Enhanced FSM (EFSM) algorithm to 

discover SH-frequent itemsets rapidly.  
When discovering long SH-frequent itemsets, the 

number of candidate itemsets C  increases quickly even 
when the number of distinct items is small. The 
Apriori-gen function [2] is time-consuming when there 
are many RC  candidates. Therefore, instead of joining 
arbitrary two itemsets in RC , EFSM joins arbitrary 
itemset of RC  with a single item in RC  to generate C  
efficiently. Let candidate (k-1)-itemset X  be {i , i …, i } 
in the order of literals. Let the candidate 1-itemset X  be 
i

k

k-1

k-1

k-1 1 k

p 1 2 k-1

q

q∈I. If i < i , then X = {i , i …, i , i } is a candidate 
k-itemset. Next, in the prune step, the procedure deletes 
all itemsets X

k-1 q 1 2 k-1  q

∈Ck in which at least one (k-1)-subset of X 
is not in RC . The pseudo-codes of the Join and Prune 
functions are as follows.  

k

 
function Join(RCk-1, RC1)  
1.  Ck:=φ ; 
2. foreach Xp={i1, i2, …,ik-1}∈RCk-1 { 
3.  foreach iq ∈RC1 { 
4.   if (i >i ) { q k-1
5.    X=Xp∪ i ; q
6.    C =C +X; } } } k k
 
function Prune(Ck)  
1. foreach X∈Ck { 
2.  if there is a (k-1)-subset of X∉RC  { k-1

3.   C =C -X; } k k } 
 

EFSM joins an arbitrary 1-itemset of RC  with each 
(k-1)-itemset of RC  when i < i . Therefore, the time 
complexity of the join step is reduced to O(n ). 
Furthermore, EFSM and FSM generate the identical set of 
candidate k-itemsets. EFSM does not require other extra 
computation overhead to reduce the time complexity of 
the join step. The strategy also can be applied to the ZSP 
algorithm to improve its performance. The improved ZSP 
algorithm is called the Enhanced ZSP (EZSP) algorithm.  

1

k-1 k-1 q
k

4 SUPPORT-COUNTED FAST SHARE 
MEASURE (SuFSM) ALGORITHM 

Although EFSM reduces the time complexity of the join 
step, it does not reduce the number of candidates, which 
always limits the performance of discovering 
share-frequent itemsets. FSM employs the level closure 
property and has an inequality to limit candidate 
generation. To further reduce the number of RC  
candidates and improve the performance, this study also 
proposes the S

k

upport-counted FSM (SuFSM) and 
Share-counted FSM (ShFSM) algorithms (ShFSM is 
presented in Section 5). The performance of EFSM is 
significantly better than that of FSM, which has been 
demonostrates by our experiments (see Section 6 later). 
Therefore, the development of SuFSM and ShFSM is 
based on the EFSM algorithm. 

Definition 4.1 Given a k-itemset X and a database DB, an 
arbitrary superset of X with length k + 1 in T  is denoted as 
X , where X ⊆ T

q
k+1 k+1

q∈DB. For example, in Table 1, Let X 
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= {F}, X  = {AF}, {FG}, or {FH}. k+1

Definition 4.2 Given a k-itemset X and a database DB, the 
set which contains all (k+1)-supersets of X in DB is 
denoted as S(X ), where X S(X ). For example 
Table 1, Let X = {F}, S(X ) = {{A, F}, {F, G}, {F, H}}. 

k+1 k+1∈ k+1

k+1

Definition 4.3 Given a DB and a k-itemset X, the set of 
transactions of which each transaction contains at least 
one X  is denoted as db k+1 . Therefore, the support 
value of S(X ) denoted as Sup(S(X )) is equal to 
|db k+1 |. For example, in Table 1, Let X = {F}, 
Sup(S(X )) = 2. Let X = {FH}, Sup(S(X )) = 0.  

k+1
S(X )

k+1 k+1

S(X )
k+1 k+1

Let maxSup(X ) denote thek+1  maximum spport value 
among all Sup(X ) in DB. Let X be a candidate k-itemset. 
FSM and EFSM obtain the upper bound of the maximum 
distribution number, lmv(X)/k, of transactions, containing 
the arbitrary superset of X. According to the bound value, 
the MV value and the ML value, FSM can determine 
whether X has any superset that could be an SH-frequent 
itemset. However, the value lmv(X)/k is not tight to the 
maxSup(X ). The following equation holds. 

k+1

k+1

lmv(X)/k Sup(X) Sup(S(X≥ ≥ k+1))≥maxSup(Xk+1). (1)

If no superset of X is an SH-frequent itemset, then the 
following four equations hold. 

lmv(X) + (lmv(X)/k)×MV× (ML - k) < min_lmv, (2)

lmv(X)+Sup(X)×MV× (ML - k) < min_lmv,  (3)

lmv(X)+Sup(S(Xk+1))×MV× (ML - k)<min_lmv, 
and 

(4)

lmv(X)+maxSup(Xk+1)×MV× (ML - k) < min_lmv. (5)

The left hand side of each of the four equations is 
called a critical function CF(X) of the itemset X. Equation 
5 can be used to prune the most useless candidates among 
the four equations, but wastes much memory space to 
count the support value so as to obtain the value of 
maxSup(Xk+1). The number of combinations of all 
(k+1)-supersets reaches O(n2k-2), where n is the number of 
distinct items. By contrast to obtaining the value of 
Sup(S(Xk+1)), the cost of finding the value of maxSup(Xk+1) 
is too high. Calculating the value of Sup(S(Xk+1)) only 
requires a variable to accumulate the support value for 
each candidate itemset when DB is scanned. Therefore, 
Support-counted FSM (SuFSM) modifies the inequality 
Eq. 2 used in FSM to Eq. 4. SuFSM employs the support 
value as a parameter to prune more candidates than FSM 
and EFSM do.  

5 SHARE-COUNTED FAST SHARE MEASURE 
(ShFSM) ALGORITHM 

SuFSM calculates the value of Sup(S(Xk+1)) for each 
candidate in Ck being applied to determine RCk. For 
EFSM and SuFSM, a lower critical function value 
generates a smaller set RCk. Although the two parameters 
MV and (ML - k) limit the upper bound of the CF(X) value, 
they relax the real upper bound. Therefore, this section 

presents the Share-counted FSM (ShFSM) algorithm to 
compact the interval between the critical function value 
and the maximum local measure value of Xk+1. Let X be a 
k-itemset, which is a subset of (k+1)-itemset Xk+1 in DB. 
Other notations and characteristics of ShFSM are as 
follows. 

Definition 5.1 Given a DB, let X and X’ be two itemsets, 
where X ⊆ X’. The local measure value of X on X’, 
denoted as lmv(X, X’), is the sum of the itemset measure 
values in dbx’. In other words, lmv(X, X’) = 
∑
∈ '

),( X
xq dbT

qTimv . If X = X’, then lmv(X, X’) = lmv(X). 

Lemma 5.1 Let X, X’ and X’’ be three itemsets, X  
X’  X’’, then 

⊆
⊆

(1) lmv(X, X’’) ≤  lmv(X’, X’’), especially when X’ = 
X’’, lmv(X, X’) ≤  lmv(X’).  

(2) lmv(X, X’)  lmv(X, X’’), especially when X = X’, 
lmv(X)  lmv(X, X’’). 

≥
≥

Proof. The proof of this lemma may be found in [14]. 

Theorem 5.1 Given a DB and a k-itemset X, we have 
lmv(X) + Sup(S(Xk+1))×MV× (ML - k)≥ Tmv(dbS(Xk+1)). 
Proof. Let (k+1)-superset of X be Xk+1⊆ Tp. By Lemma 
5.1, lmv(X)≥ lmv(X, Xk+1). So, 

lmv(X) + Sup(S(Xk+1))×MV× (ML-k) 
≥ lmv(X, Xk+1) + Sup(S(Xk+1)) MV (ML-k).× × (6)

For each transaction Tq∈DB, since MV (ML - k)  
tmv(T

× ≥
q) – imv(X, Tq), Sup(S(Xk+1)) MV (ML - k)  × × ≥

∑
+∈

)1(

)(
kXSq dbT

qTtmv – ∑
+∈

)1(

),(
kXSq dbT

qTXimv  in dbS(Xk+1). So, 

Sup(S(Xk+1))×MV× (ML - k) 
≥ Tmv(dbS(Xk+1))-lmv(X, Xk+1). (7)

By Eqs. 6 and 7, we have  

lmv(X)+Sup(S(Xk+1))×MV× (ML-k) ≥ Tmv(dbS(Xk+1)). 
Q.E.D 

Theorem 5.2 Given a minShare, if Tmv(dbS(Xk+1)) < 
min_lmv, all supersets of X are infrequent. 
Proof. For arbitrary superset X’ of X with length k + i, 
where 0 < i ≤  (ML - k), since dbX’⊆ dbS(Xk+1), Tmv(dbX’) 
≤ Tmv(dbS(Xk+1)). In a DB, lmv(X’) Tmv(db≤ X’). So, if 
the inequality Tmv(dbS(Xk+1)) < min_lmv holds, lmv(X’) < 
min_lmv = minShare× Tmv. That is, SH(X’) = lmv(X’) / 
Tmv < minShare. X’ is infrequent.   Q.E.D 

Theorem 5.2 guarantees that if Tmv(dbS(Xk+1)) < 
minShare× Tmv, no superset of X is SH-frequent in DB. 
The characteristic can be applied to prune candidates 
whose supersets are not SH-frequent. The ShFSM 
algorithm based on EFSM is a level-wise, multiple passes 
algorithm. Among the three algorithms, EFSM, SuFSM 
and ShFSM, ShFSM obtains the smallest critical function 
value for a candidate itemset X. Therefore, ShFSM can 
prune more candidates than SuFSM and EFSM.  
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6 EXPERIMENTAL RESULTS 

The performance of the proposed algorithms was 
compared with that of ZSP and FSM using a 1.5 GHz 
Pentium IV PC with 1.5 GB of main memory, running 
Windows XP Professional. All algorithms were coded in 
Visual C++ 6.0, and applied to several synthetic datasets. 
Each algorithm employed the trie structure to count the 
local measure value. The complete SH-frequent itemsets 
were outputted to main memory to avoid disk writing.  

This study uses the IBM synthetic data generator [15] 
to generate several synthetic datasets. The VC++ version 
of the data generator was obtained from [16]. To simulate 
the characteristic of the measure value in each item which 
appears in each transaction, the measure value was 
randomly generated between 1 and m, with 50% of 
measure value set as 1. Table 4 summarizes the 
parameters used in these experiments. The notation 
Tx.Iy.Dz.Nn.Sm denotes a dataset with given parameters x, 
y, z, n and m.  

Table 4. Parameters 
x Mean size of the transactions 
y Mean size of potentially frequent itemsets 
z Number of transactions in DB 
n Number of items 
m Maximum measure value 

Figures 1, 2 and 3 plot the performance curves of 
running time with the six algorithms applied to 
T4.I2.D100k.N50.S10, T6.I4.D100k.N200.S10 and 
T10.I6.D100k.N500.S20, respectively. The main memory 
was not enough to run ZSP and EZSP using the last two 
datasets. As Fig. 3 shows, FSM and EFSM generated too 
many candidates to run in main memory when 
minShare ≤ 0.4%. The x-axis represents several distinct 
minShare thresholds between 0.1% and 1.2%, and the 
y-axis stands for the running time. The three figures use a 
logarithmic scale for the y-axis. Figure 2 demonstrates 
that EZSP performed better than ZSP by more than two 
orders of magnitude. EFSM always significantly 
outperforms FSM. The three figures show that ShFSM 
had the best performance, followed by SuFSM. For 
example, as indicated in Fig. 3, ShFSM’s running time 
was only 13%, 2% and 0.03% of those of SuFSM, EFSM 
and FSM, respectively, when minShare = 0.6%.  

Table 5 presents the numbers of Ck and RCk in each 
pass using the dataset T6.I4.D100k.N200.S10 when 
minShare = 0.1%. ShFSM generated the fewest 
candidates among the four algorithms. ShFSM terminated 
the process at pass 10 and performed best in that aspect, 
while the others went up to pass 13. FSM and EFSM 
produced the identical Ck and RCk sets. EFSM 
significantly reduced the time complexity of the join step. 
Therefore, EFSM is faster than FSM. All the four 
algorithms can discover all SH-frequent itemsets even 
when no (k-1)-subset is SH-frequent. For example, in the 
pass 5, the five SH-frequent 5-itemsets have no 
SH-frequent 4-subset. 
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Figure 1:  Running time comparison 
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Figure 2: Running time comparison 
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Figure 3: Running time comparison  

Table 5: Comparison on the number of candidates in each 
pass using T6.I4.D100k.N200.S10 (ML=20) 

Method
Pass (k) FSM EFSM  SuFSM ShFSM Fk

Ck 200 200 200 200k=1 RCk 200 200 199 197 159

Ck 19900 19900 19701 19306k=2 RCk 16214 16214 13312 7199 1844

Ck 829547 829547 564324 190607k=3 RCk 251877 251877 99765 9792 101

Ck 3290296 3290296 793042 20913k=4 RCk 332877 332877 41057 1420 0

Ck 393833 393833 25003 1050k=5 RCk 71420 71420 19720 959 5

Ck 26137 26137 11582 518k=6 RCk 25562 25562 11045 506 8

Ck 11141 11141 5940 204k=7 RCk 11099 11099 5827 196 7

Ck 4426 4426 2797 58k=8 RCk 4423 4423 2750 54 1

Ck 2036 2036 1567 12k 9≥ RCk 2030 2030 1513 10 0

Time(sec) 13610.4 71.55 29.67 10.95
 

Figure 4 presents the scalability with the transaction 
number of DB using T6.I4.Dz.N200.S10, where minShare 
= 0.3%. The x-axis represents several distinct DB sizes 
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between 100k and 1000k, and the y-axis represents the 
running time. Figure 4 uses a logarithmic scale for the 
y-axis. The running times of EFSM, SuFSM and ShFSM 
linearly increased with the growth of the DB size. The 
running time of FSM only increased by 50% from 
|DB|=100k to |DB|=1000k, because the join step 
dominated the performance of FSM. The size of DB 
dominated the running times of EFSM, SuFSM and 
ShFSM. 
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Figure 4: Scalability with the transaction number of DB,  

7 CONCLUSIONS 

The value of the itemset share can provide useful 
information, such as the total profit or total sales of an 
itemset in the database. Therefore, itemset share can 
overcome the drawbacks of the support measure. The 
development of an efficient way to discover complete 
SH-frequent itemsets is an important solution to various 
mining problems. However, the downward closure 
property fails to discover all share-frequent itemsets. To 
solve such problem and develop an efficient method for 
rapidly generating all SH-frequent itemsets, in this study, 
we have proposed the Enhanced FSM (EFSM) algorithm 
to efficiently reduce the time complexity of the join step. 
In addition, we have also developed SuFSM and ShFSM 
from EFSM. SuFSM and ShFSM can efficiently prune the 
candidates, and significantly improve the performance. 
The experimental results have indicated that ShFSM has 
the best performance. In the future, the authors plan to 
develop even more advanced algorithms to accelerate the 
process of identifying all SH-frequent itemsets. 
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