南臺科技大學 106 學年度第 2 學期課程資訊		
課程代碼	30D08303	
課程中文名稱	工程數學(二)	
課程英文名稱	Advanced Engineering Mathematics (II)	
學分數	3.0	
必選修	必修	
開課班級	四技系統二乙	
任課教師	方信普	
上課教室(時間)	週五第 2 節(W0603)	
	週五第 3 節(W0603)	
	週五第 4 節(W0603)	
課程時數	3	
實習時數	0	
授課語言1	華語	
授課語言 2		
輔導考照1		
輔導考照 2		
課程概述	We begin studying ordinary differential equations by deriving them from physical or other problems (modeling), solving them by standard methods, and interpreting	
	solutions and graphs in terms of a given problem.	
	The simplest ordinary differential equations, called ODEs of the first order are to be initiated. In the second chapter we discuss linear ODEs of the second order.	
	This chapter includes the derivation of general and particular solutions. Then we	
	extend the concepts and methods for linear ODEs to orders more than 3.	
	In chapter 6 we consider the Laplace transform and its application to engineering	
	problems involving ODEs. The Laplace transform is a powerful method for	
	solving linear ODEs and corresponding initial value problems without first	
	determining a general a general solution.	
<u> </u>	がれまれ、一分とマルルヤロ	
先修科目或預備	微積分、普通物理	
能力	>>/6時 中央組む額辺口種 基本組む額辺口種 素様々を補	
課程學習目標與	※編號 ,中文課程學習目標 ,英文課程學習目標 ,對應系指標	
核心能力之對應	1 利田物理、索與、機械、化與等久種理論建立甘數與方程式,並熟悉解答	
	1.利用物理、電學、機械、化學等各種理論建立其數學方程式,並熟悉解答 技巧。 , , 1 專業技能	
	2.能建立工程問題的數學模型並進一步利用數學或電腦程式求解,,2 工	
	程實務	
	3.建立以數學為基礎之理工知能終身學習能力。,,5 終身學習	
	いた上が分子が全族人は上が内では、サロガウン、、、・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	

	4.從數學推理及演算過程中培養整合創新能力。,,7 系統整合
中文課程大綱	第9章 向量微分、梯度、散度、旋度
	9.1 二度及三度空間向量
	9.2 內積
	9.3 向量積
	9.4 向量場與純量場・導函數
	9.5 曲線・弧長・曲率・ 轉距
	9.6 多變數函數
	9.7 純量場梯度•方向導函數
	9.8 向量場散度
	9.9 向量場旋度
	第10章 向量積分・積分定理
	10.1 線積分
	10.2 與路境無關之線積分
	10.3 雙重積分
	10.4 平面之葛林定理
	10.6 面積分
	10.7 三重積分・高斯發散定理
	10.9 史托克思定理
	第 11 章 傅立葉級數、積分及轉換
	11.1 傅立葉級數
	11.2 週期為 2L 之函數
	11.3.偶函數與奇函數•半程展開式
	11.6 三角多項式之近似
	11.7 傅立葉積分
英/日文課程大綱	Chapter 9 Vector Differential Calculus, Gradient, Div, Curl
	9.1 Vectors in 2-space and 3-space
	9.2 Inner Product (Dot Product)
	9.3 Vector Product (Cross Product)
	9.4 Vector and Scalar Functions and Fields. Derivatives
	9.5 Curves. Arc Length. Curvature. Torsion
	9.6 Calculus Review: Functions of Several Variables
	9.7 Gradient of a Scalar Field. Directional Derivative
	9.8 Divergence of a Vector Field
	9.9 Curl of a Vector Field
	Chapter 10 Vector Integral Calculus. Integral Theorem
	10.1 Line Integrals
	10.2 Path Independence of Line Integrals

	10.3 Calculus Review: Double Integrals
	10.4 Green's Theorem in the Plane
	10.5 Surface for Surface Integrals
	10.6 Surface Integrals
	10.7 Triple Integrals. Divergence Theorem of Gauss
	10.8 Stokes's Theorem
	Chapter 11 Fourier Series, Integral, and Transform
	11.1 Fourier Series
	11.2 Function of Any Period p=2L
	11.3 Even and Odd Functions. Half-Range Expansions
	11.6 Approximation by Trigonometric Polynomials
	11.7 Fourier Integral
課程進度表	4-1 簡 介
林生進)文化	4-2 拉普拉斯轉換
	4-3 導數和積分的拉氏轉換
	4-4 移位性質
	4-5 拉氏轉換式的微分與積分性質
	4-6 反轉換技巧
	4-7
	4-8 摺合積分
	4-8 指 傾
	5-2 矩陣基本運算
	5-3 矩阵基本建算
	7 = 1 1 1 3 ===
	5-4 線性方程式組:矩陣化
	5-5 矩陣的秩 5-6 E
	5-6 反矩陣
	5-7 行列式
	5-8 柯拉瑪法則
	5-9 特徵值,特徵向量
	7-1 傅立葉級數:概觀
	7-2 任意週期的週期函數 7-2 (本)
	7-3 對稱在求傅立葉係數上的應用
	7-4 半幅展開式
教學方式與評量	※課程學習目標 ,教學方式 ,評量方式
方法	
	利用物理、電學、機械、化學等各種理論建立其數學方程式,並熟悉解答技
	巧。 , 課堂講授 , 筆試筆試

	筆試筆試
	建立以數學為基礎之理工知能終身學習能力。,課堂講授,筆試筆試
	從數學推理及演算過程中培養整合創新能力。 , 課堂講授 , 筆試筆試
指定用書	書名:工程數學
	作者:張傳濱
	書局:新文京
	年份: 2014
	ISBN: 978-986-236-941-8
	版本:6th
参考書籍	None
教學軟體	scilab
課程規範	1. 上課不可睡覺、不玩手機、不交談、不吃食物
	2. 必須出席
	3. 有平時考