南台科技大學 99 學年度第 1 學期課程資訊		
VLSI 系統設計與高階合成		
30M02101		
03		
博研電子一甲 碩研電子一甲 海研電子一甲 碩研通訊一甲		
陳順智		
3.0		
3		
五 2 3 4 教室 S607		
選修		
教授高階合成的設計流程與觀念及 Verilog 語法的使用。		
會使用 Verilog 設計 IC 並驗證		
1.簡介		
1.1 積體電路演進		
1.2 設計流程		
2.半客戶化設計流程		
2.1 設計方法		
2.2 元件庫為基礎的設計流程		
2.3 快速雛形設計與驗證		
3.暫存器轉移層程式撰寫		
3.1 硬體描述語言介紹		
3.2 Verilog 硬體描述語言語法介紹		
4.數位系統設計		
4.1 基本元件之設計解碼器、多工器、比較器、算術單元		
4.2 記憶元件之設計正反器、拴鎖器		
5.高階合成之控制單元設計		
5.1 控制流表示方式		
5.2 資料流表示方式		
5.3 有限狀態機設計		
6.高階合成之資料流設計		
6.1 資源最佳化設計		
6.2 執行時間最佳化設計		
6.3 範例探討		
7.单一系統語片 7.1 系統晶片單一化之演變		
7.2 智財晶片設計規範		
8.低功率晶片設計		
8.1 功率消耗來源		

	8.2 降低功率消耗之設計方法
英文大綱	1.Introduction
	1.1 Integrated Circuits Evolution
	1.2 IC Design Flow
	2.Semi-Custom Design Flow
	2.1 Design Methodologies
	2.2 Cell-Based Design Flow
	2.3 FPGA Design and Verification
	3.Register-Transfer Lever(RTL) Coding
	3.1 Hardware Description Language Introduction
	3.2 Verilog HDL Syntactic Grammar
	4.Digital System Design
	4.1 Basic Elements Design – Decoders, Multiplexers, Comparators, ALUs
	4.2 Memory Elements Design – Flip-Flops, Latches
	5.Control Unit
	5.1 Control Flow Representation
	5.2 Data Flow Representation
	5.3 Finite State Machine Design
	6.Data Path
	6.1 Resource Optimization
	6.2 Time Optimization
	6.3 Case Study
	7.System-on-a-Chip (SOC)
	7.1 SOC Evolution
	7.2 Intellectual Property Specification
	8.Low Power Design
	8.1 Sources of Power Consumption
	8.2 Power Reduction Methods
教學方式	課堂教授,
評量方法	自行設計測驗,作業/習題練習,課程參與度(出席率),
指定用書	自編講義
参考書籍	
先修科目	數位系統設計
教學資源	
注意事項	
全程外語授課	0
授課語言1	華語

授課語言 2	
輔導考照1	
輔導考照 2	