
 

Part 8. Special Topic: Light Scattering 
 
Light scattering occurs when polarizable particles in a sample are placed in the 
oscillating electric field of a beam of light. The varying field induces oscillating 
dipoles in the particles and these radiate light in all directions.  Light scattering has 
been utilized in many areas of science to determine particle size, molecular weight, 
shape, thermodynamic properties, diffusion coefficients etc. 

 
 

Static Light Scattering 

In static light scattering the time average value of the scattered intensity is measured 
as function of the scattering angle.  This allows to determine the weight average of 
the molar mass Mw , the z-average of the squared radius of gyration <R 2 > z and the 



second virial coefficient of the osmotic pressure A2.  

As mentioned above the oscillating electric field of light induces oscillating dipoles 
within molecules and these therefore radiate light in all directions. The wavelength of 
the scattered light is identical with the wavelength of the incident beam.  
 
Rayleigh applied the Maxwell theory of electrodynamics and derived the so called 
Rayleigh ratio of scattered intensity and primary beam intensity for gases: 

         (1) 

R(θ): Rayleigh ratio as a function of scattering angle θ 
I: Intensity of the scattered light 
I0: Intensity of the primary beam 
r: Distance of detector and scattering volume 
λ0: Wavelength of the primary beam in vaccum 
Nk: Number of scattering centers 
αk: Polarizability of the scattering center k (polarization  p = α E) 
θ: Angle between primary and scattered beam 

 
Using vertically polarized light of a laser the scattering intensity (of small particles) 
is indepent from the scattering angle and the so called polarization term (1 + cos2θ) 
equals 2.  
The absolute scattering intensity of several pure liquids (e.g. toluene or benzene) are 
utilized as calibration standards and with their help the absolute scattering intensity of 
other liquids and solutions are determined. All specific parameters of the scattering 
apparatus (e.g. distance r of the detector, size of the scattering volume, primary beam 
intensity of the laser) are therefore eliminated.  For the measurement of the Rayleigh 
ratio of any solution the following formula has to be applied: 

          (2) 

RRstandard : Absolute scattering intensity of the standard. (for toluene at 90o scattering 
angle, 23oC, the value is14.02 x 10-6 cm-1 @ 633 nm) 

 

Einstein developed the fluctuation theory for the scattering in a solution.  Scattering 
can only occur if there are differences of the refractive index of a small volume 
compared to its neighborhood.  Since α in a liquid or a solution is described as a 
function of fluctuations of the density and the fluctuation of the concentration due to 



thermal movements of the molecules, 

     (3) 

NL : Avogardro constant 
ρ, ρ0 : Density of the solution and solvent 
n, n0 : Refractive index of solution and solvent 
β : Isothermal compressibility 
M0: Molar mass of the solvent 
∆µ: Difference of the chemical pothential of solution and solvent 
 
There are two contributions for the Rayleigh ratio (density fluctuations and 
concentration fluctuations).  For diluted solutions it can be assumed that the 
contribution of the density fluctuations of solution and solvent are the same. 
Therefore the scattering of the dissolved substance is given by: 

     (4) 

The change of the chemical potential with the concentration can be described as a 
change of the osmotic pressure with concentration: 

            (5) 

Π: Osmotic pressure 
 
Use of a series development of the osmotic pressure with respect to concentration 
yields: 

         (6) 

A2, A3 : Virial coefficients of the osmotic pressure 

 
Inserting eqs. 5 and 6 in eq 4 yields: 

         (7) 



 
Furthermore, for polymers with dimensions in the range of the wavelength of the light 
applied (particles larger than λ/20), interference of the scattered light occurs: 

 
At the angle θ = 0° the path difference of the scattered elemental waves is zero, 
therefore the scattered intensity of large particles is not influenced by interference 
effects.  Extrapolating the scattered intensity to zero angle allows us to interpret the 
result in terms of the Rayleigh theory. (however, measurements at θ=0 are not 
possible because the primary beam intensity is much larger than the scattered beam 
intensity (factor of 106)). 

 
 
For large particles the dependence of the scattered intensity is expressed by the form 
factor P(q).  For the calculation of P(q) it has to be considered that due to thermal 
(Brownian) motion a particle adopts all possible orientations in space. Therefore an 



average value of all possible orientations and distances are measured: 

           (8) 

 

N: Number of scattering centers within a particle 
rij=ri - rj: Distance of scattering centers i and j  
n: Refractive index of the solvent 
Integration over all possible orientations yields: 

         (9) 

For small values of the scattering vector q, the form factor P(q), which only depends 
on shape and size of the particle, can be rewritten as a polynomial series: 
 

     (10) 

The mean squared radius of gyration is defined by: 
 

          (11) 

 

Application of eqs 10 and 11 yields for monodisperse particles: 
 

            (12) 
Polydispersity does not only influence the form factor but also the mean squared 
radius of gyration: 
 

            (13) 



 
mi : Mass of the particle i 
Mi : Molar mass of the particle i 
 
Therefore we can rewrite eq 7: 

        (14) 

Using the relationships in eq 14 

 
we get the famous Zimm Equation: 

        (15) 

By plotting the data  as a function of q2 + kc, we can extrapolate for c→0 and 

q 2→0.  From the intercept of both the c-dependence as well as the q² dependence we 
can calculate Mw and from the slopes we get <R 2 > z (from q2 dependence) and A2 

(from c dependence). 
 

 



 
(1) Berry plot 

Sometimes Zimm plot does not give a linear plot (Zimm plot is excellent in 
fitting mid-size particles 20~50 nm), an alternative plot is thus tested.  Similar to the 
Zimm plot, the data (Kc/R(θ))1/2 is plotted as a function of q2 + kc (Berry plot) 
according to the following equation: 

       (16) 

Berry plot is useful for high molecular weight flexible polymers (>50 nm). 
 

 
 

 

(2) Guinier plot (Another way to obtain <R 2 > z) 

Guinier used the expression: ln(1-x) ≈ -x to obtain the equation: 
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Thus plotting lnI against q2 gives <R 2 > z  directly.  Example lnI x q against q: 
(slopes give <R 2 > z) 

 



 

 
(3) Kratky plot (Kratky-Porad plot) 

 A plot of 
Kc
R )(2 qq  vs. q (or 

Kc
Ru )(2 q  vs. u, where u is is dimensionless q = 

q<R 2 > z
1/2 ). 

 Features:  (1) straight line: rigid rod 
    (2) a well-developed plateau: Gaussian coil 
    (3) a combination of (2) & (3): kink-point defines q* 
“coillike-to-rodlike transition” *q/lk π12=   
 Problem: is difficult to identify in a coillike behavior plot (Kratky plot) 
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(4) Holtzer plot (Cassasa-Holtzer plot) 

A plot of 
Kc

)(R qq  vs. q (or 
Kc

)(R qq  vs. u) 

Features: (1) rod 
  (2) wormlike chain (semirigid): plateau value at large q = πML (where 

ML is the mass per unit length); the ratio of maximum height/ asymptotic plateau 
height determines the number of Kuhn segments NK. 

  (3) coil 

 



Monodisperse chains: umax = 1.4; polydisperse chains: umax is a function of 
polydispersity. 

 
 
 
Dynamic Light Scattering (Quasi-elastic Light Scattering or Photon Correlation 
Spectroscopy) 

 
 

In dynamic light scattering the fluctuations of the scattering intensity due to Brownian 
motion of the particles are correlated by means of an intensity-time autocorrelator. 
The correlator monitors the scattering intensities in small time intervals τ over a 
total observation time t=n.τ with n the number of time intervals τ. Typically 



n=100-500 and τ=1-1000 μsec. The autocorrelation function g2(t) is than 
calculated as 

          (18) 

where the brackets <….> denote an average over typically 106-108
 single correlations. 

For ergodic medium, the ensemble average equals to the time average.  From g2(t) 
the electric field correlation function g1(t) is derived by the Siegert relation 
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where A is a measured baseline and β is a parameter (<1) depending on the coherence 
of the detection.  The baseline A can be determined as 

             (20) 

In this limit the intensities I(t=0) and I(t→∞) are not correlated, i.e. 

       (21) 

Since 

             (22) 

the intensity correlation function decays from <I2> to <I>2. 
 

 

In a dilute solution, for particles in Brownian motion, g1(t) is reduced to: 
)exp()(1 ττ Γ−=g              (23) 

where qD 2=Γ  is the relaxation rate and D is the diffusion coefficient.  A dynamic 
Zimm plot can be used to obtain the z-average D as q  0 and c  0. 

      (24) 

applying the Stokes-Einstein equation we can calculate the hydrodynamic radius of a 
corresponding sphere: 



            (25) 

where k Boltzmann factor, T temperature in K, η0 viscosity of the solvent.  The  
<R 2 > z

1/2/Rh ratio is 1.0 for hard sphere, 1.23 for unperturbed coils, 1.5~1.7 for coils 
in good solvents. 
Sometime, the cumulant expansion method is used to extract more information from 
g1(t) 

        (26) 
 
 
Comparison of LLS, SAXS, and SANS 

 
 
X-rays are scattered by electrons (roughly proportional to the atomic number); 
neutrons are scattered by nuclei (characterized by “scattering lenth” b, which is not a 
function of atomic number); and light is scattered according the polarizability 
α (proportional to the square of index of refraction). 
 



 
 
 


