- 3-1. Consider an ideal two-state electronic paramagnet DPPH (diphenyl picrylhydrazyl, a nitrogen atom with an unpaired electron in the middle of it to serve as the magnet.) with $\mu = 5.788 \times 10^{-5}$ eV/T. If the magnetic field B = 2.06 T (Tesla, the unit for magnetic fields) and the temperature is 2.2 K, calculate the energy and magnetization as a fraction of its maximum possible value.
- 3-2. Starting from $\ln \Omega(N,s) = \ln N! \ln N_{\uparrow}! \ln N_{\downarrow}!$, show that the entropy of a two-state paramagnet, expressed as a function of temperature, is $S = Nk[\ln(2\cosh x) - x \tanh x]$, where $x = \mu B/kT$. Find the value of *S* as $T \to 0$ and $T \to \infty$.